路文婧,沙偉,馬天意
植物PRE類轉(zhuǎn)錄因子基因的研究進(jìn)展
路文婧1,2,沙偉1,2,馬天意1,2
(齊齊哈爾大學(xué) 1. 生命科學(xué)與農(nóng)林學(xué)院,2. 抗性基因工程與寒地生物多樣性保護(hù)黑龍江重點(diǎn)實(shí)驗(yàn)室,黑龍江 齊齊哈爾 161006)
多效唑是一種赤霉素合成抑制劑,抗多效唑(paclobutrazol-resistance,PRE)基因家族編碼的蛋白質(zhì)可與多效唑發(fā)生拮抗作用,這些蛋白質(zhì)具有螺旋-環(huán)-螺旋(basic Helix-Loop-Helix,bHLH)結(jié)構(gòu),在高等植物中參與轉(zhuǎn)錄調(diào)控從而在植物發(fā)育的許多方面發(fā)揮關(guān)鍵作用.基因通過參與各種激素(如赤霉素,油菜素內(nèi)酯,生長(zhǎng)素等)、溫度和光響應(yīng)信號(hào)通路來調(diào)節(jié)植物的生長(zhǎng)和發(fā)育,對(duì)植物生長(zhǎng)發(fā)育具有重要意義.綜述基因在植物中的研究進(jìn)展,主要包括基因的基本性質(zhì)、分類、功能以及所參與的植物生理過程等方面,為進(jìn)一步研究植物PRE類轉(zhuǎn)錄因子基因提供理論基礎(chǔ).
;植物生長(zhǎng);植物發(fā)育
抗多效唑(paclobutrazol-resistance,PRE)基因編碼一類非典型的堿性螺旋-環(huán)-螺旋(basicHelix- Loop-Helix,bHLH)家族蛋白質(zhì),bHLH是第二大轉(zhuǎn)錄因子家族,包含一個(gè)高度保守的氨基酸基序,該基序可以在整個(gè)真核生物中找到,包括PRE在內(nèi)的許多bHLH蛋白質(zhì)廣泛參與植物逆境脅迫響應(yīng)[1-7].
多效唑是具有植物激素活性的三唑類化學(xué)物質(zhì),是高效低毒的植物生長(zhǎng)延緩劑,具有抑制莖枝伸長(zhǎng),使莖稈粗壯,促進(jìn)花芽形成,提高產(chǎn)量,增強(qiáng)植株抗性等多種功能[8].在赤霉素的生物合成過程中,內(nèi)-貝殼杉烯在內(nèi)-貝殼杉烯氧化酶催化下,發(fā)生氧化反應(yīng)產(chǎn)生內(nèi)-貝殼杉烯酸,多效唑?qū)?nèi)-貝殼杉烯氧化酶的活性具有抑制作用,從而抑制赤霉素的合成,這也是多效唑的主要生化功能[9].在植物生理作用方面,多效唑?qū)χ参锞哂忻黠@的矮化作用,主要原因是多效唑能夠提高生長(zhǎng)素氧化酶的活性,加速體內(nèi)生長(zhǎng)素的分解,調(diào)節(jié)植物體內(nèi)生長(zhǎng)素和脫落酸含量,抑制植株的生長(zhǎng).黃相[10]等設(shè)置不同用量的多效唑處理,結(jié)果表明,適期、適量的多效唑處理對(duì)香蕉()營養(yǎng)生長(zhǎng)均具明顯的抑制作用.多效唑能通過增厚莖壁和機(jī)械組織,影響質(zhì)膜穩(wěn)定性;通過提高超氧化物歧化酶、過氧化氫酶、過氧化物酶、吲哚乙酸氧化酶等蛋白質(zhì)的活性,改變脫落酸、赤霉素、過氧化氫、丙二醛、離子自由基、脯氨酸、多胺的含量,從而提高植物對(duì)鹽和重金屬等脅迫的抗性[11-13].在植物體內(nèi),基因可以編碼抗多效唑的蛋白質(zhì)分子[6]593,除拮抗多效唑之外還有其他的生物學(xué)功能.
近年來,對(duì)基因的性質(zhì)和功能缺少系統(tǒng)性的概述.本文對(duì)基因的基本性質(zhì)、功能和植物的生長(zhǎng)發(fā)育方面進(jìn)行綜述,旨在為今后其他植物相關(guān)基因的研究提供可行性理論基礎(chǔ).
擬南芥()基因組編碼超過160個(gè)bHLH蛋白質(zhì),這些蛋白質(zhì)被分為15~25個(gè)亞家族,典型的bHLH是植物激素轉(zhuǎn)導(dǎo)途徑和多種生物合成途徑中的關(guān)鍵轉(zhuǎn)錄調(diào)節(jié)因子[1-2].bHLH包含一個(gè)堿性區(qū)域和一個(gè)螺旋-環(huán)-螺旋結(jié)構(gòu)域,堿性區(qū)域參與DNA結(jié)合,螺旋-環(huán)-螺旋結(jié)構(gòu)域與堿性區(qū)域相連,參與蛋白質(zhì)與蛋白質(zhì)的相互作用[7,14-16].含有bHLH結(jié)構(gòu)域的蛋白質(zhì)通常作為同源或異源二聚體調(diào)節(jié)靶基因的表達(dá),這些靶基因參與許多生理過程,在植物激素的生物合成、代謝和轉(zhuǎn)導(dǎo)中具有廣泛的功能.這些轉(zhuǎn)錄因子在植物生長(zhǎng)發(fā)育、應(yīng)激反應(yīng)和生化功能中都具有調(diào)節(jié)作用[14-18].在擬南芥中有147個(gè)堿性HLH蛋白質(zhì)缺乏DNA結(jié)合結(jié)構(gòu)域[18]1750,但這些蛋白質(zhì)可以與其他bHLH因子二聚化以抑制DNA結(jié)合[1,4-5,17-18].
植物PRE類轉(zhuǎn)錄因子基因家族包括6種基因,分別是/(),/,//(),/,,/()[1-7].在相關(guān)的遺傳學(xué)突變體材料構(gòu)建方面,Shin[19]等通過RT-PCR分析,發(fā)現(xiàn)在擬南芥的,或突變體中相對(duì)應(yīng)的基因確認(rèn)是無效等位基因,而突變體中的是異形等位基因,突變體沒有進(jìn)一步研究,因?yàn)橥蛔凅w(GK646C02)的T-DNA插入在3-UTR區(qū)域,這不會(huì)改變轉(zhuǎn)錄水平,對(duì)于基因,目前沒有可用的T-DNA插入突變體.
PRE亞家族蛋白質(zhì)參與激素、溫度和光反應(yīng)的信號(hào)轉(zhuǎn)導(dǎo)途徑,并以多種方式調(diào)節(jié)植物的生長(zhǎng)發(fā)育,在植物中對(duì)赤霉素、油菜素內(nèi)酯、生長(zhǎng)素和光信號(hào)的反應(yīng)中正向調(diào)節(jié)細(xì)胞伸長(zhǎng)[4-6,16,20-21],主要通過與另一種bHLH轉(zhuǎn)錄因子IBH1(ILI1 binding bHLH1)相互作用而發(fā)揮功能[22-23].
通過廣泛的信號(hào)調(diào)節(jié)參與植物的生長(zhǎng)過程,這些信號(hào)包括油菜素內(nèi)酯、生長(zhǎng)素和光等[2-5],基因的表達(dá)對(duì)這些植物激素或環(huán)境信號(hào)表現(xiàn)出差異性響應(yīng).在特定的環(huán)境條件或發(fā)育背景下,不同基因的異位表達(dá)會(huì)引起非常相似的發(fā)育改變,包括發(fā)芽提前、開花提前和營養(yǎng)器官生長(zhǎng)伸長(zhǎng)等,在差異的空間表達(dá)模式下,基因可能根據(jù)發(fā)育環(huán)境的不同發(fā)揮不同的功能[6,17],所以認(rèn)為基因之間有功能相似性和不相等冗余性[22]869.
在促進(jìn)細(xì)胞伸長(zhǎng)方面,LEE[6]等使用PRE1-GUS融合蛋白質(zhì)的亞細(xì)胞定位分析,結(jié)果顯示,PRE1在擬南芥細(xì)胞核中定位,同時(shí)發(fā)現(xiàn)抑制赤霉素生物合成導(dǎo)致突變體的矮化表型,表明參與赤霉素調(diào)節(jié)的細(xì)胞伸長(zhǎng).在擬南芥和水稻()中,及其同源物lNCREASED LAMINA INCLINATION1(ILI1)的過表達(dá)會(huì)增加油菜素內(nèi)酯誘導(dǎo)的細(xì)胞伸長(zhǎng)率[3,14,24].此外還發(fā)現(xiàn),PRE家族成員通過相互作用和形成異二聚體抑制非典型bHLH蛋白質(zhì)間接促進(jìn)細(xì)胞伸長(zhǎng)[3-5].
最初被確定為赤霉素反應(yīng)正調(diào)節(jié)因子,赤霉素信號(hào)通過GID(GIBBERELLIN-INSENSITIVE DWARF)受體和DELLA依賴性機(jī)制增加轉(zhuǎn)錄水平[6]597.轉(zhuǎn)基因研究表明,與同源的基因在功能上是冗余的,并可能在擬南芥赤霉素依賴性生長(zhǎng)和發(fā)育的各個(gè)方面具有調(diào)節(jié)作用,如發(fā)芽、下胚軸和葉柄的伸長(zhǎng),花誘導(dǎo)和果實(shí)發(fā)育[6,25-26].在擬南芥中所有發(fā)育階段顯示,其他成員的過表達(dá)表現(xiàn)出與的過表達(dá)相似的赤霉素過量表型,表明不同基因可能受到赤霉素的調(diào)節(jié)程度有所差異[6,15].
進(jìn)一步研究表明,介導(dǎo)油菜素內(nèi)酯、生長(zhǎng)素和光信號(hào)轉(zhuǎn)導(dǎo)[3,25-26].在擬南芥中,基因與ARF6(AUXIN RESPONSE FACTOR 6)協(xié)同調(diào)節(jié)擬南芥的細(xì)胞伸長(zhǎng),PRE1與IBH1、HBI(HOMOLOG OF BRASSINOSTEROID ENHANCED EXOR ESSION2 INTERACTING WITH IBH1)組成一個(gè)三方HLH/bHLH級(jí)聯(lián)反應(yīng),PRE1-IBH1-HBI1相互作用調(diào)控植物發(fā)育,其中PRE1和IBH1可結(jié)合形成異二聚體,達(dá)到相互拮抗的效果,而IBH1與HBI1相互作用后可抑制HBI1與DNA結(jié)合,阻止HBI1調(diào)控下游基因的表達(dá),從而影響植物對(duì)油菜素內(nèi)酯、赤霉素、溫度和光信號(hào)的調(diào)控途徑[22]4917.其他基因與可能存在功能冗余,表現(xiàn)在敲除包括在內(nèi)的基因可顯著降低轉(zhuǎn)基因擬南芥對(duì)生長(zhǎng)素的靈敏度[27]1;采用激活標(biāo)記技術(shù)發(fā)現(xiàn)激活標(biāo)記突變體下胚軸變長(zhǎng),過表達(dá)基因的下胚軸長(zhǎng)度也增加[6]592;,,均能被油菜素內(nèi)酯誘導(dǎo)[4]3784.
番茄()中的被鑒定具有控制花柱長(zhǎng)度的功能,此外被發(fā)現(xiàn)可能通過影響參與光信號(hào)傳導(dǎo)的bHLH蛋白質(zhì)活性來影響植物形態(tài)變化,是果實(shí)葉綠素和類胡蘿卜素積累的負(fù)調(diào)節(jié)因子[28].過表達(dá)的被鑒定為表型的顯性抑制因子,可以抑制油菜素內(nèi)酯不敏感突變體的表型,的突變體顯示出與生長(zhǎng)素相關(guān)的表型,參與擬南芥光信號(hào)轉(zhuǎn)導(dǎo)的調(diào)節(jié)[2,4].
擬南芥中PRE6是一種光信號(hào)抑制因子,被認(rèn)為與光信號(hào)傳導(dǎo)有關(guān)[26]688,通過負(fù)調(diào)節(jié)HFR1(LONG HYOOCOTYL IN FAR-RED1)活性來減弱日光條件下光介導(dǎo)的反應(yīng)[1,5,29].參與避蔭反應(yīng)[30-33],是一個(gè)生長(zhǎng)素應(yīng)答基因,其表達(dá)直接受到ARF5和ARF8的調(diào)控,是一種負(fù)調(diào)控生長(zhǎng)素反應(yīng)的轉(zhuǎn)錄抑制因子,同時(shí)還與其他共同參與擬南芥脫落酸和抗鹽反應(yīng)的調(diào)節(jié):鹽處理會(huì)誘導(dǎo),,,的表達(dá),過表達(dá)或的轉(zhuǎn)基因植物耐鹽性增強(qiáng)[34-35].在擬南芥生長(zhǎng)素信號(hào)調(diào)節(jié)中發(fā)揮作用,其在莖尖分生組織和根分生組織中均有表達(dá),其過度表達(dá)使植物表現(xiàn)出與生長(zhǎng)素功能相關(guān)的表型,出現(xiàn)加長(zhǎng)的初生根和降低的側(cè)根密度,這種效應(yīng)可以通過外源應(yīng)用生長(zhǎng)素處理來恢復(fù),表明在調(diào)節(jié)生長(zhǎng)素介導(dǎo)的根發(fā)育過程中發(fā)揮了功能[2,36-37],這種根表型也可能是光信號(hào)調(diào)節(jié)的結(jié)果,因?yàn)楣饪梢哉蛘{(diào)節(jié)根發(fā)育.另外,是生長(zhǎng)素響應(yīng)因子ARF5的靶基因,這是根莖發(fā)育所必需的調(diào)控元件[2]913.?dāng)M南芥中和的表達(dá)均受光調(diào)節(jié),導(dǎo)致非常相似的表型,而響應(yīng)方式相反,紅光、遠(yuǎn)紅光和藍(lán)光誘導(dǎo)表達(dá),但抑制的表達(dá).因此,盡管這兩個(gè)基因的過表達(dá)導(dǎo)致非常相似的光敏感表型,但它們的表達(dá)受到光的不同調(diào)節(jié),這表明它們可能在光信號(hào)通路的調(diào)節(jié)中發(fā)揮不同的作用[5,29].和都是對(duì)生長(zhǎng)調(diào)節(jié)和環(huán)境敏感的基因,其相關(guān)研究表明這樣一些基因參與脫落酸的反應(yīng)[34,38].?dāng)M南芥中影響與光相關(guān)的生理過程,也稱,突變體顯示出與光調(diào)控相關(guān)的表型,如葉綠素水平降低、萼片和心皮顏色改變、開花時(shí)間發(fā)生變化等.一些是依賴光形態(tài)發(fā)生和發(fā)育信號(hào)通路調(diào)節(jié)開花時(shí)間必需的基因,,,在花中表達(dá)并參與光信號(hào)傳導(dǎo)[1]690,它們參與調(diào)節(jié)與光相關(guān)的bHLH的活性,是花瓣中APETALA3/PISTILLATA(AP3/PI)負(fù)調(diào)控的直接靶基因[1,5].
LI[39]等通過轉(zhuǎn)基因技術(shù)證明,蘋果()增加了對(duì)NaCl、脫落酸和生長(zhǎng)素的敏感性,并提高了對(duì)油菜素內(nèi)酯的耐受性,但是不會(huì)影響蘋果對(duì)赤霉素的反應(yīng).可能是油菜素內(nèi)酯信號(hào)通路的負(fù)調(diào)節(jié)劑,而且蘋果的基因表達(dá)譜顯示,不同的成員在根、莖、葉、花和果實(shí)組織中存在差異表達(dá),表明它們的時(shí)空多樣性與其在不同組織和不同生長(zhǎng)發(fā)育階段的功能有關(guān),這些結(jié)果與之前在其他植物組織中的研究結(jié)果一致[19]872.在草莓()中,被生長(zhǎng)素抑制并被脫落酸激活,但其表達(dá)不受赤霉素的影響[38]586.
在擬南芥中,Shin[19]等采取反向遺傳方法構(gòu)建不同基因的高階突變體,一些雙階或高階前突變體表現(xiàn)出花發(fā)育缺陷,導(dǎo)致生育力下降,通常具有生育能力,和均顯示生育能力降低,突變體的生育力下降加劇,表明這些基因的冗余和關(guān)鍵作用.自花授粉和掃描電鏡分析研究表明,的不育主要?dú)w因于花藥絲的細(xì)胞伸長(zhǎng)率降低,限制了花粉進(jìn)入柱頭.
基因在不同植物激素或環(huán)境信號(hào)中的差異表達(dá)和不同組織的優(yōu)先表達(dá)模式也暗示了基因發(fā)揮冗余和特定的作用[3,6,24,40].多種蛋白質(zhì)相互作用介導(dǎo)了PRE的不同調(diào)節(jié)過程,AIF1(APOPTOSIS-INDUCING FACTOR1),HFR1,IBH1,HBI1與所有PRE蛋白質(zhì)相互作用,并參與各種生物學(xué)功能,如對(duì)激素信號(hào)的反應(yīng)等,而這些不同的蛋白質(zhì)與PRE相互作用的親和力有所不同,所調(diào)控的具體生物學(xué)過程也有所不同[41-43],AIF1負(fù)向調(diào)節(jié)油菜素內(nèi)酯信號(hào)[41]1;IBH1響應(yīng)赤霉素和油菜素內(nèi)酯信號(hào),負(fù)調(diào)控細(xì)胞和器官伸長(zhǎng)[44].此外,PRE蛋白質(zhì)與屬于BRE1家族的HUB1和AT3G06590蛋白質(zhì)相互作用,這些蛋白質(zhì)也參與油菜素內(nèi)酯信號(hào)通路,說明基因家族成員與油菜素內(nèi)酯信號(hào)通路成員關(guān)系密切[24]669.
近年來,對(duì)基因家族的研究從未停止,發(fā)現(xiàn)可通過參與各種激素、溫度和光響應(yīng)等信號(hào)通路在調(diào)節(jié)植物生長(zhǎng)發(fā)育方面發(fā)揮關(guān)鍵作用.目前已發(fā)現(xiàn)一些過表達(dá)可提高植物耐鹽性[35]239,但在植物抗逆功能的研究中仍十分稀少,需更多研究來發(fā)掘相關(guān)功能,由于不同PRE響應(yīng)的各種植物激素都參與一些植物抗逆過程,推測(cè)PRE可以通過調(diào)控植物激素發(fā)揮植物抗逆相關(guān)功能.此外,在所有基因中,鮮少被研究,目前已知的表達(dá)可由生長(zhǎng)素誘導(dǎo)[24]9,但在調(diào)控植物形態(tài)、信號(hào)轉(zhuǎn)導(dǎo)方面的研究較少.不同物種組織表達(dá)模式不同,表明它們參與了多種生物學(xué)過程,具有相對(duì)復(fù)雜的功能,基因功能在擬南芥研究中報(bào)道較多,在其他植物中的研究仍較少.本文對(duì)各基因功能進(jìn)行綜合,以期對(duì)今后在其他植物中進(jìn)行基因功能和分子機(jī)制的深入研究提供幫助.
[1] MARA C D,HUANG T,IRISH V F.Thefloral homeotic proteins APETALA3 and PISTILLATA negatively regulate thegenes implicated in light signaling[J].The Plant Cell,2010,22(3):690-702.
[2] SCHLERETH A,M?LLER B,LIU W,et al.MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor[J].Nature,2010,464(7290):913-916.
[3] ZHANG L,BAI M Y,WU J,et al.Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and[J].The Plant Cell,2009,21(12):3767-3780.
[4] WANG H,ZHU Y,F(xiàn)UJIOKA S,et al.Regulation ofbrassinosteroid signaling by atypical basic helix-loop-helix proteins[J].The Plant Cell,2009,21(12):3781-3791.
[5] Hyun Y,Lee I.KIDARI,Encoding a non-dna binding bHLH protein,represses light signal transduction in[J].Plant Molecular Biology,2006,61(12):283-296.
[6] LEE S,LEE S,YANG K Y,et al.Overexpression ofand its homologous genes activates gibberellin-dependent responses in[J].Plant &Cell Physiology,2006,47(5):591-600.
[7] Ruzinova M B,Benezra R.Id proteins in development,cell cycle and cancer[J].Trends in Cell Biology,2003,13(8):410-418.
[8] 廖聯(lián)安,郭奇珍.新型植物生長(zhǎng)延緩劑和殺菌劑:氯丁唑[J].植物生理學(xué)通訊,1985(6):56-58.
[9] 張石城,劉祖祺.植物化學(xué)調(diào)控原理與技術(shù)[M].北京:中國農(nóng)業(yè)大學(xué)出版社,1999:333-437.
[10] 黃相,鄒瑜,趙明,等.多效唑?qū)?個(gè)香蕉品種旱地栽培的矮化效應(yīng)[J].中國南方果樹,2022,51(4):63-67.
[11] 王海山,孫紅梅.植物生長(zhǎng)延緩劑提高紅茄抗旱性的研究[J].中國農(nóng)學(xué)通報(bào),2012,28(7):126-132.
[12] Sharma D K,Dubey A K,Srivastav M,et al.Effect of putrescine and paclobutrazol on growth,physiochemical parameters,and nutrient acquisition of salt-sensitive citrus rootstock karnakhatta(Raf)under NaCl stress[J].Journal of Plant Growth Regulation,2011,30(3):301-311.
[13] WEI H,ZHUANG C H,CAO Y,et al.Paclobutrazol and plant-growth promoting bacterial endophytesp.enhance copper tolerance of guinea grass()in hydroponic culture[J].Acta Physiologiae Plantarum,2012,34(1):139-150.
[14] Heim M A,Jakoby M,Werber M,et al.The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J].Molecular Biology and Evolution,2003,20(5):735-747.
[15] HAO Y,ZONG X,REN P,et al.Basic helix-loop-helix(bHLH)transcription factors regulate a wide range of functions in[J].International Journal of Molecular Sciences,2021,22(13):7152.
[16] LI X,DUAN X,JIANG H,et al.Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and[J].Plant Physiology,2006,141(4):1167-1184.
[17] Carretero-Paulet L,Galstyan A,Roig-Villanova I,et al.Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in,poplar,rice,moss,and algae[J].Plant Physiology,2010,153(3):1398-1412.
[18] Toledo-ortiz G,Huq E,Quail P H.Thebasic/helix-loop-helix transcription factor family[J].The Plant Cell,2003,15(8):1749-1770.
[19] Shin K,Lee I,Kim E,et al.-gene family regulates floral organ growth with unequal genetic redundancy in[J].International Journal of Molecular Sciences,2019,20(4):869.
[20] Chapman E J,Greenham K,Castillejo C,et al.Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways[J].PLoS ONE,2012,7(5):e36210.
[21] ZHU Z,CHEN G,GUO X,et al.Overexpression of,an atypical bHLH transcription factor,affects plant morphology and fruit pigment accumulation in tomato[J].Scientific Reports,2017,7(1):5786.
[22] BAI M Y,F(xiàn)AN M,OH E,et al.A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in[J].The Plant Cell,2012,24(12):4917-4929.
[23] HOU Q,ZHAO W,LU L,et al.Overexpression of HLH4 inhibits cell elongation and anthocyanin biosynthesis in[J].Cells,2022,11(7):1087.
[24] Tanaka A,Nakagawa H,Tomita C,et al.BRASSINOSTEROIDUPREGULATED1,encoding a helix-loop-helix protein,is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J].Plant Physiology,2009,151(2):669-680.
[25] OH E,ZHU J Y,WANG Z Y.Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J].Nature Cell Biology,2012,14(8):802-809.
[26] HAO Y,OH E,CHOI G,et al.Interactions between HLH and bHLH factors modulate light-regulated plant development[J].Molecular Plant,2012,5(3):688-697.
[27] OH E,ZHU J Y,BAI M Y,et al.Cell elongation is regulated through a central circuit of interacting transcription factors in thehypocotyl[J].E Life,2014,27(3):e03031.
[28] CHEN K Y,CONG B,WING R,et al.Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes[J].Science,2007,318(5850):643-645.
[29] HONG S Y,SEO P J,RYU J Y,et al.A competitive peptide inhibitor KIDARI negatively regulates HFR1 by forming nonfunctional heterodimers inphotomorphogenesis[J].Molecules and Cells,2013,35(1):25-31.
[30] TIAN Q,REED J W.Molecular links between light and auxin signaling pathways[J].Journal of Plant Growth Regulation,2001,20(3):274-280.
[31] Halliday K J,Martinez-garcia J F,Josse E M.Integration of light and auxin signaling[J].Cold Spring Harbor Perspectives in Biology,2009,1(6):a001586.
[32] Sassi M,Ruberti I,Vernoux T,et al.Shedding light on auxin movement:light-regulation of polar auxin transport in the photocontrol of plant development[J].Plant Signaling Behavior,2013,8(3):e23355.
[33] Gommers C M M,Keuskamp D H,Buti S,et al.Molecular profiles of contrasting shade response strategies in wild plants:differential control of immunity and shoot elongation[J].The Plant Cell,2017,29(2):331-344.
[34] ZHENG K,WANG Y,ZHANG N,et al.Involvement of,an atypical bHLH transcription factor,in auxin responses in[J].Frontiers in Plant Science,2017,24(8):1813.
[35] ZHENG K,WANG Y,WANG S.The non-DNA binding bHLH transcription factor Paclobutrazol Resistances are involved in the regulation of ABA and salt responses in[J].Plant Physiology and Biochemistry,2019,139:239-245.
[36] Castelain M,Le Hir R,Bellini C.The non-DNA-binding bHLH transcription factoris involved in the regulation of light signaling pathway in[J].Physiologia Plantarum,2012,145(3):450-460.
[37] Salisbury F J,Hall A,Grierson C S,et al.Phytochrome coordinatesshoot and root development[J].The Plant Journal,2007,50(3):429-438.
[38] Medina-Puche L,Martinez-Rivas F J,Molina-Hidalgo F J,et al.An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle[J].BMC Plant Biology,2019,19(1):586.
[39] LI T,SHI Y,ZHU B,et al.Genome-wide identification of apple atypical bHLH subfamilymembers and functional characterization ofin response to abiotic stress[J].Frontiers in Genetics,2022,13:846559.
[40] Singh M,Gupta A,Singh D,et al.RSS1 mediates crosstalk between glucose and light signaling during hypocotyl elongation growth[J].Scientific Reports,2017,7(1):16101.
[41] Ikeda M,Mitsuda N,Ohme-Takagi M.ATBS1 INTERACTING FACTORs negatively regulatecell elongation in the triantagonistic bHLH system[J].Plant Signaling Behavior,2013,8(3):e23448.
[42] De Rybel B,van den Berg W,Lokerse A,et al.A versatile set of ligation-independent cloning vectors for functional studies in plants[J].Plant Physiology,2011,156(3):1292-1299.
[43] Gruszka D.Crosstalk of the brassinosteroid signalosome with phytohormonal and stress signaling components maintains a balance between the processes of growth and stress tolerance[J].International Journal of Molecular Sciences,2018,19(9):2675.
[44] LU R,ZHANG J,LIU D,et al.Characterization of bHLH/HLH genes that are involved in brassinosteroid(BR)signaling in fiber development of cotton()[J].BMC Plant Biology,2018,18(1):304.
Research progress of PRE transcription factor genes in plants
LU Wenjing1,2,Sha Wei1,2,Ma Tianyi1,2
(1. School of Life Sciences,Agriculture and Forestry,2. Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas,Qiqihar University,Qiqihar 161006,China)
Paclobutrazolis an inhibitor of gibberellin synthesis,()is a class of genes that encode proteins antagonistic to the paclobutrazol,the proteins contain basic Helix-Loop-Helix(bHLH)structure that participating transcription regulation,in order to plays important roles in various aspects of plants′ development.genes regulate plant growth and development by participating in various hormone,temperature and light response signaling pathways,such as gibberellin(GA),brassinolide(BR),auxin(IAA),so that have great significance for the growth and development of plants.The research progresses of PRE transcription factor in plants were summarized,including the basic properties,classification,function ofgenes and the physiological processes participated in plants,in order to provide a theoretical basis for further studies of PRE.
;plant growth;plant development
Q943
A
10.3969/j.issn.1007-9831.2024.02.013
1007-9831(2024)02-0064-05
2023-08-12
黑龍江省省屬高等學(xué)?;究蒲袠I(yè)務(wù)費(fèi)科研項(xiàng)目(145109135);黑龍江省普通本科高等學(xué)校青年創(chuàng)新人才培養(yǎng)計(jì)劃項(xiàng)目(UNPYSCT-2020073);黑龍江省省屬高等學(xué)?;究蒲袠I(yè)務(wù)費(fèi)科研項(xiàng)目青年創(chuàng)新人才項(xiàng)目(145109212)
路文婧(1998-),女,內(nèi)蒙古赤峰人,在讀碩士研究生,從事植物逆境分子遺傳學(xué)研究.E-mail:2833380559@qq.com
馬天意(1989-),男,黑龍江齊齊哈爾人,副教授,博士,從事植物逆境分子遺傳學(xué)研究.E-mail:tyma8902@qqhru.edu.cn