摘 要: 犬過敏性皮炎是獸醫(yī)臨床常見的皮膚疾病,它受到多種因素的影響,包括自身遺傳和環(huán)境過敏原。這些因素導(dǎo)致患犬不同皮膚部位的炎癥和瘙癢,嚴(yán)重降低了它們的生活質(zhì)量和健康狀況。除了常規(guī)的藥物治療和護(hù)理方法外,研究還發(fā)現(xiàn)飲食中一些膳食成分在犬皮膚疾病治療中發(fā)揮作用,通過飲食治療改善皮膚癥狀逐漸引起了獸醫(yī)和寵物主人的關(guān)注。因此,本文總結(jié)了常見的犬過敏性皮膚疾病類別、發(fā)病機(jī)制和臨床癥狀,并闡述了不同的膳食調(diào)控物質(zhì),包括必需脂肪酸、水解蛋白、多酚、益生菌、維生素和礦物質(zhì)對犬過敏性皮膚疾病的作用機(jī)制和改善效果的研究進(jìn)展,旨在為犬過敏性皮膚疾病的研究、飲食設(shè)計與產(chǎn)品開發(fā)提供參考依據(jù)。
關(guān)鍵詞: 犬;皮膚過敏;飲食治療;膳食調(diào)控
中圖分類號:S858.2927.5
文獻(xiàn)標(biāo)志碼:A
文章編號: 0366-6964(2024)09-3777-15
The Role of Dietary Nutrients in Allergic Skin Diseases in Dogs
WANG" Qingzheng" XIAO" Xiaojie" HUANG" Fuqing 4, JI" Xinyu" ZHANG" Xin "HU" Manli
(1.Gannan Innovation and Transformation Medical Research Institute, Gannan Medical University,
Ganzhou 341000, China;
2.State Key Laboratory of New Targets Discovery and
Drug Development for Major Diseases, Ganzhou 341000," China;
3.Key Laboratory of
Cardiovascular Disease Prevention and Control, First Affiliated Hospital of
Gannan Medical University, Ganzhou 341000," China;
4.Ganzhou Pet Health Science Research Institute, Ganzhou 341000," China)
Abstract:" Canine allergic dermatitis is a common skin disease in the veterinary clinic, and it is affected by several factors, including autogenetic and environmental allergens. These factors cause inflammation and itching in different skin sites of the affected dogs, severely reducing their quality of life and health status. In addition to routine drug treatment and care methods, studies have found that some dietary components in the diet play a role in the treatment of canine skin diseases, and improving skin symptoms through dietary treatment has gradually attracted the attention of veterinarians and pet owners. Therefore, this paper summarizes the common categories, pathogenesis and clinical symptoms of dog allergic skin diseases in dogs, and expounds the research progress of different dietary regulatory substances, including essential fatty acids, hydrolytic proteins, polyphenols, probiotics, vitamins and minerals on dog allergic skin diseases and the improvement effect, aiming to provide reference for the research, diet design and product development of dog allergic skin diseases.
Key words: canine; skin allergy; dietary treatment; dietary regulation
*Corresponding authors:" ZHANG Xin, E-mail: zhangxin@gmu.edu.cn; HU Manli, E-mail: humanli@gmu.edu.cn
過敏性皮膚疾病是犬常見的皮膚疾病之一,普遍是由外界環(huán)境引起的皮膚組織過敏性炎癥,主要包括特應(yīng)性皮炎(atopic dermatitis, AD)和特定過敏原過敏性皮膚病,其中AD包括遺傳過敏性皮炎和異位性皮炎(異位性皮炎是特應(yīng)性皮炎的舊稱,不是包括的意思),特定過敏原過敏性皮膚病包括寄生蟲過敏性皮炎、食物過敏性皮炎(food allergy dermatitis, FAD)和過敏性接觸性皮炎(allergic contact dermatitis, ACD)。這類疾病共同特點是皮膚不同程度瘙癢、炎癥、損傷和脫毛,嚴(yán)重的還會出現(xiàn)消化系統(tǒng)、呼吸系統(tǒng)癥狀,如嘔吐、腹瀉、呼吸急促甚至是休克[1],嚴(yán)重影響了犬的生活質(zhì)量。
犬過敏性皮膚疾病的病因復(fù)雜多樣,包括自身遺傳、生活環(huán)境和免疫異常等,生活中存在多種過敏原刺激是引起疾病發(fā)生的主要因素,包括花粉、塵螨、食物和化學(xué)試劑等[2-3]。因此,診斷不同類別的犬過敏性皮炎不僅靠皮膚的炎癥和瘙癢,還需通過病史收集、皮膚刮片、血清學(xué)檢測、過敏原測試等方式來區(qū)別不同的過敏性皮膚?。?],從而制定相應(yīng)的藥物治療和飲食管理。糖皮質(zhì)激素和鈣調(diào)磷酸酶抑制劑在犬身上已經(jīng)應(yīng)用的非常廣泛,表現(xiàn)出全身的抗炎和抗瘙癢作用[5-6],另外唯一批準(zhǔn)用于犬的JAK激酶抑制劑——奧拉替尼,被證明在快速治療犬過敏性瘙癢癥狀上發(fā)揮明顯作用[7-8]。而在皮膚局部治療方面,藥浴、外用脂類補(bǔ)充劑和糖皮質(zhì)激素噴霧等也作為改善皮膚的屏障功能和瘙癢癥狀的常規(guī)治療方式[9]。
另外,皮膚作為一個巨大且代謝活躍的器官,需要多種營養(yǎng)成分的支持。研究表明,不同的膳食調(diào)控方式對治療過敏性皮膚疾病具有一定作用[10]。獸醫(yī)常將飲食療法作為皮膚疾病治療的輔助手段[11-14],旨在改善皮膚臨床癥狀的同時,降低長期的藥物治療和皮膚管理給寵物主人帶來的精神和經(jīng)濟(jì)壓力[15]。本綜述將探討犬過敏性皮膚疾病的發(fā)病機(jī)制和臨床癥狀,特別關(guān)注不同膳食調(diào)控方法在疾病管理中的研究進(jìn)展,以及其在治療中的潛在作用。
1 犬特應(yīng)性皮炎
犬AD是一種遺傳性的炎癥性和瘙癢性皮膚疾病,它通常是由內(nèi)在因素(遺傳性過敏體質(zhì))和外部環(huán)境過敏原的復(fù)雜相互作用所引發(fā)的[4,14],遺傳因素使得犬AD可能成為終生反復(fù)出現(xiàn)的問題。臨床上,犬AD通常在免疫系統(tǒng)發(fā)育成熟后出現(xiàn),多見于1~3歲的犬,癥狀包括面部、耳朵、爪、四肢腋窩、會陰和腹側(cè)的瘙癢和感染。不同品系的犬在癥狀上可能存在細(xì)微差異,例如,斑點狗可能更容易出現(xiàn)嘴唇的瘙癢,而德國牧羊犬則常見于肘部、后肢和胸部等部位[16-17]。犬AD的確切發(fā)病機(jī)制尚未完全闡明,但目前的研究表明,皮膚屏障功能缺陷、皮膚微生物組失調(diào)、免疫失調(diào)等遺傳和環(huán)境因素的共同作用在該疾病的進(jìn)展中起著重要作用。
犬AD在遺傳學(xué)上表現(xiàn)出明顯遺傳易感性。研究表明,患有AD的犬的后代有將近50%的概率也患上AD,這一遺傳易感性在受到環(huán)境和個體基因的影響下,可能發(fā)展為臨床疾病狀態(tài)[18]。為了鑒定犬AD的遺傳標(biāo)記和致病遺傳變異,研究人員已經(jīng)采用多種遺傳學(xué)研究方法,包括全基因組連鎖研究、全基因組關(guān)聯(lián)研究和候選基因關(guān)聯(lián)研究,發(fā)現(xiàn)了一系列候選基因,它們影響了角質(zhì)形成細(xì)胞在皮膚屏障的作用(FLG、PKP2、TSLPR)、皮膚的脂質(zhì)代謝(PROM1、P450 26B1)和T細(xì)胞、B細(xì)胞參與的免疫反應(yīng)(DPP4、MS4A2)[19-23],從而構(gòu)成了犬AD免疫失調(diào)和皮膚屏障缺陷的遺傳基礎(chǔ)。然而,由于不同品種和地理區(qū)域的差異,不同犬種可能存在著不同的基因突變。有些研究發(fā)現(xiàn)FLG基因在白梗和金毛獵犬中呈現(xiàn)相反的表達(dá)趨勢,這表明白梗犬的FLG基因可能不參與AD的發(fā)展進(jìn)程[24-25]。犬AD的遺傳機(jī)制研究證實了皮膚屏障缺陷和免疫失衡是該疾病的關(guān)鍵發(fā)病機(jī)制。
皮膚屏障由角質(zhì)層的角質(zhì)細(xì)胞組成,其中蛋白質(zhì)如聚絲蛋白(FLG)和角蛋白為皮膚細(xì)胞提供機(jī)械強(qiáng)度,細(xì)胞外脂質(zhì)薄片環(huán)繞角質(zhì)細(xì)胞,含有膽固醇、游離脂肪酸和神經(jīng)酰胺,這些脂質(zhì)維持皮膚的保水能力和抵抗物理、化學(xué)和生物的侵害[26-28]。然而,在AD犬中,非病變皮膚角質(zhì)層的層狀脂質(zhì)結(jié)構(gòu)存在不完整和異常,與健康犬相比,神經(jīng)酰胺和脂質(zhì)含量顯著降低[26,29-31],有研究發(fā)現(xiàn),神經(jīng)酰胺下降是由于β-葡萄糖腦苷脂酶活性不足,導(dǎo)致大量的葡萄糖神經(jīng)酰胺未能轉(zhuǎn)化成游離神經(jīng)酰胺[32]。因此,犬AD的皮膚屏障功能缺陷涉及到細(xì)胞外脂質(zhì)的異常合成以及各種細(xì)胞內(nèi)蛋白的表達(dá)異常,這可能導(dǎo)致更多的過敏原易于穿透皮膚引起免疫反應(yīng)[33-34]。此外,皮膚微生物組的失調(diào)也會影響皮膚屏障功能,早在2001年,研究已證明AD犬容易在皮膚上出現(xiàn)葡萄球菌和馬拉色菌[35]。研究發(fā)現(xiàn),AD犬皮膚中的Th2型炎癥環(huán)境會增強(qiáng)葡萄球菌和纖連蛋白、纖維蛋白原的結(jié)合,促進(jìn)葡萄球菌在皮膚定植,從而并發(fā)葡萄球菌膿皮病[36-37],而馬拉色菌似乎有代謝脂質(zhì)的特性,能導(dǎo)致皮膚中的脂質(zhì)含量降低[38],同時還能激活皮膚免疫系統(tǒng),觸發(fā)超敏反應(yīng)[39-40]。另外微生物產(chǎn)生的過敏原,如細(xì)胞壁成分和毒素等,也會導(dǎo)致IgE介導(dǎo)的肥大細(xì)胞脫顆粒、T細(xì)胞活化和皮膚蛋白酶損傷,進(jìn)而導(dǎo)致皮膚屏障損傷和炎癥的發(fā)展[41-43]。
犬AD臨床癥狀和免疫失調(diào)密切相關(guān)。在AD犬中,遺傳因素與環(huán)境刺激相互作用,導(dǎo)致一系列免疫反應(yīng)的不平衡。長期接受刺激后,IgE水平升高、Th2免疫反應(yīng)主導(dǎo),以及皮膚淋巴細(xì)胞相關(guān)抗原的T細(xì)胞數(shù)量增加。此外,皮膚樹突狀細(xì)胞和朗格漢斯細(xì)胞中FcεRI表達(dá)增加以及胸腺基質(zhì)淋巴細(xì)胞生成素表達(dá)增加都和免疫失調(diào)的發(fā)病機(jī)制有關(guān),導(dǎo)致免疫細(xì)胞之間的調(diào)控紊亂及失衡,血液和病變皮膚中的IL-4、IL-10、IL-13和IL-34等細(xì)胞因子上升[44-47],這些細(xì)胞因子的釋放進(jìn)一步刺激組胺、白三烯、腫瘤壞死因子α等介質(zhì)的釋放,從而促進(jìn)炎癥反應(yīng)的發(fā)生[48],炎癥反應(yīng)進(jìn)一步影響皮膚的屏障功能[49]。其中IL-4、IL-13和IL-31還被證明在誘導(dǎo)瘙癢上起直接作用[50-51],尤其是IL-31被證明可作為犬AD止癢藥物治療的重要靶點[52-54]。
因此,改善皮膚屏障功能和臨床癥狀是AD犬治療的主要方向。多項營養(yǎng)研究發(fā)現(xiàn),在AD犬飲食中添加維生素、氨基酸和必需脂肪酸,可以顯著增加角質(zhì)層的神經(jīng)酰胺、游離膽固醇和脂肪酸水平[55-56],其中,必需脂肪酸還體現(xiàn)出多種抗炎和免疫調(diào)節(jié)的特性[57-58]。一些植物(如蘆薈、甘草)和植物成分(如姜黃素、槲皮素)已被證明能夠促進(jìn)皮膚成纖維細(xì)胞修復(fù)組織和減少角質(zhì)細(xì)胞水分喪失,從而改善屏障功能的作用,這些物質(zhì)還在細(xì)胞介導(dǎo)的免疫反應(yīng)中表現(xiàn)出顯著的抗炎作用[59-61]。此外,腸道-皮膚軸概念提出了腸道微生物的調(diào)控對皮膚屏障和皮膚微生物群的調(diào)節(jié)可能性[62]。因此,一些研究試圖在犬飲食中添加益生菌或者益生元來改善皮膚癥狀[63-64],比如沙克乳酸桿菌 Probio-65[65]和副干酪乳酪桿菌 K71[66]已被證明在AD上具有皮膚改善作用。
2 犬特定過敏原過敏性皮膚病
與AD中環(huán)境因素易感性不同的是,特定過敏原導(dǎo)致的過敏性皮膚疾病通常相對容易控制,這些過敏性皮膚疾病包括寄生蟲過敏、食物過敏、化學(xué)物品過敏等。犬寄生蟲過敏性皮炎通常由跳蚤或螨蟲引起[67],跳蚤的過敏原主要包括唾液中的蛋白水解酶、組胺樣物質(zhì)、多肽和氨基酸等,這些過敏原誘導(dǎo)Ⅰ型、Ⅳ型和皮膚嗜堿性粒細(xì)胞超敏反應(yīng)[68-69],導(dǎo)致TH2免疫反應(yīng),進(jìn)而引發(fā)IgE水平的增加,皮膚病變區(qū)域出現(xiàn)肥大細(xì)胞浸潤,IL-4、IL-5、IL-13等炎癥因子的過度表達(dá)[70-71],這導(dǎo)致跳蚤寄生部位的瘙癢性丘疹性皮炎,癥狀從前期的瘙癢、紅斑和風(fēng)團(tuán)逐漸發(fā)展為脫毛、皮膚損傷,嚴(yán)重情況下可能繼發(fā)葡萄球菌和馬拉色菌感染[71-73]。
與跳蚤過敏相比,螨蟲過敏性皮炎的臨床表現(xiàn)更為嚴(yán)重。螨蟲通過深入皮膚和毛囊之中,并攜帶鏈球菌,導(dǎo)致頭部和四肢周圍皮膚出現(xiàn)局部或者全身的皮膚增厚、瘙癢,紅斑和角質(zhì)化,甚至是疥癬或疥瘡,可能進(jìn)一步引發(fā)淺表膿皮病[68,74]。螨蟲過敏的主要過敏原包括螨蟲的分泌物和脫落的皮殼[75],多項研究指出,塵螨的主要致敏蛋白包括Der f 1、Der f 15和Der f 18,這些過敏原與角質(zhì)細(xì)胞相互作用,破壞皮膚的細(xì)胞屏障,導(dǎo)致多種炎性細(xì)胞因子和趨化因子的產(chǎn)生[76-78]。這一過程不僅在塵螨接觸區(qū)域,還在接觸部位附近的皮膚中引起不同程度的神經(jīng)酰胺下降[79]。
對于AD或者寄生蟲過敏性皮炎,F(xiàn)AD有著非季節(jié)性發(fā)病的特征,在犬所有皮膚病中,其患病率可高達(dá)24%[80]。食物過敏通常和胃、腸道屏障功能、免疫機(jī)制以及幼年時期的口腔耐受建立有關(guān)[81]。尤其是完整蛋白質(zhì)作為外來過敏原時,其完全消化依賴于黏膜屏障的完整性,如果蛋白質(zhì)未完全消化,將保留一些具有抗原特性的肽段,這些肽段可能引發(fā)特應(yīng)性IgE抗體與胃腸道和外周組織中的肥大細(xì)胞結(jié)合,導(dǎo)致免疫反應(yīng)。再次接觸相同食物抗原時,將釋放一系列炎癥介質(zhì),導(dǎo)致嘔吐、腹瀉和體重減輕的癥狀。然而,這些癥狀在犬中并不常出現(xiàn),因此不能作為犬食物過敏性皮炎的典型臨床特征[82]。
當(dāng)食物抗原接觸到皮膚上與IgE結(jié)合后的肥大細(xì)胞的時候,患犬可能在身體的任何部位,尤其是臉、耳朵、四肢端、腋窩、腹股溝等皮膚上出現(xiàn)炎癥和瘙癢[83]。這些皮膚癥狀與AD和寄生蟲過敏性皮炎表現(xiàn)相似[84-85]。此外,食物也是AD的一個潛在誘因,據(jù)報道,有20%~30%的食物過敏和AD有關(guān)[82]。鑒于商業(yè)犬糧的成分復(fù)雜多樣,僅靠臨床癥狀來診斷FAD是不夠準(zhǔn)確的。因此,消除飲食試驗成了最主要的診斷方式,通過單一蛋白源或商業(yè)低敏飲食來確定潛在的食物過敏原[86]。
犬ACD是一種Ⅳ型超敏反應(yīng),通常是由接觸到半抗原的非蛋白、低分子量物質(zhì)或化學(xué)物質(zhì)而引起的。前期接觸的半抗原與皮膚中的載體蛋白結(jié)合的新結(jié)合物被皮膚中的朗格漢斯細(xì)胞和樹突狀細(xì)胞加工成免疫原,在這一過程中,朗格漢斯細(xì)胞和樹突狀細(xì)胞成熟,并在淋巴結(jié)中將T細(xì)胞分化為記憶和效應(yīng)性CD8+和CD4+細(xì)胞。后期再次接觸相同半抗原時,記憶和效應(yīng)性T細(xì)胞釋放干擾素γ(IFN-γ),刺激其他炎癥因子(如IL-4、IL-10)的釋放,導(dǎo)致接觸部位發(fā)生皮膚炎癥、紅斑和瘙癢癥狀[87-88]。相比以上的犬過敏類別,ACD在犬身上并不常見,犬的毛發(fā)提供了一定的天然保護(hù),減少了接觸強(qiáng)效過敏原的機(jī)會,比如化妝品和工業(yè)化學(xué)品。同時,獸醫(yī)學(xué)對犬ACD了解甚少,目前,并沒有關(guān)于犬ACD的流行病學(xué)研究,這使得犬ACD診斷變得困難,尤其容易和AD混淆[87,89-90]。
因此,對于明確過敏原的過敏性皮膚病,主要的治療方法包括控制寄生蟲感染、降低蛋白過敏性、避免接觸過敏原物質(zhì)和維持皮膚健康。在控制體外寄生蟲感染方面,通常使用賽拉菌素、吡蟲啉和沙羅拉納等藥物[91-92]。為了減少體外驅(qū)蟲產(chǎn)品和藥物使用的依賴,并避免體外驅(qū)蟲活性分子釋放到環(huán)境中影響野生物種生態(tài),Moog等[93]、Banuls等[94]在犬貓的飲食中添加含有多酚的天然植物成分,在連續(xù)5個月的喂養(yǎng)后減少了犬貓身上的跳蚤數(shù)量并改善了臨床癥狀。此外,許多商業(yè)飲食通對將蛋白質(zhì)水解成小分子肽,成功地避免了原來的食物過敏問題[95-97]。這種方法將蛋白質(zhì)水解成小肽,使其不足以誘導(dǎo)IgE介導(dǎo)的肥大細(xì)胞激活,從而有望減少食物過敏的發(fā)生[98]。
3 犬過敏性皮膚疾病膳食調(diào)控
營養(yǎng)在維持犬的皮膚健康和免疫系統(tǒng)功能中發(fā)揮關(guān)鍵作用。研究表明,一些特定的膳食成分可以有助于減輕犬過敏性皮膚疾病的癥狀并改善皮膚炎癥。
3.1 必需脂肪酸
必需脂肪酸不僅是皮膚的能量來源,還有助于維持角質(zhì)層的屏障功能和正常的皮膚結(jié)構(gòu)[99],此外,它們還在皮膚炎癥反應(yīng)中充當(dāng)抗炎脂質(zhì)介質(zhì)-消退素和保護(hù)素的前體物質(zhì)[100]。
Ω-3脂肪酸是過敏性皮炎犬中備受關(guān)注的必需脂肪酸,包括α-亞麻酸(α-linolenic acid, ALA)、二十碳五烯酸(eicosapentaenoic acid, EPA)和二十二碳六烯酸(docosahexaenoic acid, DHA)[101-102]。它們通過與花生四烯酸(arachidonic acid, AA)競爭調(diào)節(jié)二十烷素的產(chǎn)生,降低花生四烯酸代謝產(chǎn)物前列腺素E2、白三烯B4的含量,生成前列腺素E3和白三烯B5,從而減少炎癥細(xì)胞和炎癥因子的生成,維持促炎和抗炎的平衡[103-104]。此外,Ω-3脂肪酸中ALA還可通過與表皮的神經(jīng)酰胺結(jié)合增強(qiáng)皮膚的屏障功能[56,105]。Logas和Kunkle[106]發(fā)現(xiàn),在AD犬和跳蚤過敏性皮炎犬中,每4.55 kg服用1 mL海洋油(180 mg EPA和120 mg DHA)時,相比于給予玉米油的犬,皮膚瘙癢、脫毛和炎癥都有明顯改善。另一項研究表明,商業(yè)脂肪酸補(bǔ)充劑[50~85 mg·(kg·d)-1 EPA和35~55 mg·(kg·d)-1 DHA]與單獨補(bǔ)充ALA相比,該補(bǔ)充劑在AD犬上表現(xiàn)更好皮膚改善效果[107]。雖然理論上EPA和DHA可以通過ALA的轉(zhuǎn)化獲得,但是在犬身上這種轉(zhuǎn)化率較低,這可能是出現(xiàn)差異的原因之一[108]。因此,實際中通常將ALA與EPA、DHA一起作為補(bǔ)充劑使用,以發(fā)揮在皮膚上的抗炎、抗瘙癢作用[109-110]。
此外,有研究表明,Ω-3脂肪酸補(bǔ)充劑和治療藥物免疫抑制劑、糖皮質(zhì)激素、抗組胺藥物等一起使用時,可以間接地降低藥物的劑量和依賴性[111-112]。然而,寵物主人并不能準(zhǔn)確地通過患犬的臨床癥狀準(zhǔn)確判斷何時減少藥物以及藥物減少的程度,這方面的關(guān)系仍需進(jìn)一步探索。Ω-3脂肪酸補(bǔ)充劑表現(xiàn)出來的效果已經(jīng)得到獸醫(yī)臨床界的認(rèn)可,因此,研究者們開始在犬日糧中添加高劑量的不飽和脂肪酸來尋求達(dá)到類似的效果。在一款富含不飽和脂肪酸(大豆油、亞麻籽和魚油)的犬糧中,每千克犬糧含有16.6 g的Ω-3脂肪酸,是市面上普通日糧的6倍,飼喂以后犬的瘙癢和炎癥程度明顯減輕[13]。然而,是否需要完全改變飲食習(xí)慣應(yīng)根據(jù)患寵的病情和需要來決定,逐步過渡到新飲食的階段也很重要[113]。
Ω-3脂肪酸在改善過敏性皮炎犬的臨床癥狀方面表現(xiàn)出一定的效果。需要注意的是,不同階段的疾病可能對不飽和脂肪酸的需求量和代謝存在差異。根據(jù)美國國家研究委員會(United States National Research Council,NRC)的建議,飲食中含有EPA和DHA魚油的安全劑量應(yīng)為370*BW0.75 mg,特應(yīng)性炎癥疾病中是125*BW0.75 mg[108]。研究還表明,DHA的含量達(dá)到175 mg·(kg·d)-1的情況下,血漿的DHA含量才能達(dá)到最大值,可能發(fā)揮更有效的抗炎作用[114]。許多商業(yè)犬糧未能提供足夠高的Ω-3脂肪酸濃度,可能是因為他們的推薦劑量是針對健康犬設(shè)計的。而對于患有皮膚病的犬,對脂肪酸的需求可能更高,因此需要通過飲食補(bǔ)充來滿足這些特殊需要[108,115]。
除了Ω-3脂肪酸,Ω-6脂肪酸同樣備受關(guān)注。Ω-6脂肪酸的主要類型包括亞油酸,γ-亞麻酸和花生四烯酸。這些脂肪酸對于維持犬的皮膚健康和正常生長起著關(guān)鍵作用,長期缺乏這些脂肪酸可能會導(dǎo)致皮膚損傷和生長緩慢。亞油酸參與維持皮膚水滲透屏障的功能,而花生四烯酸通過調(diào)節(jié)前列腺素E2的產(chǎn)生來影響表皮的增殖[116]。然而,正如前文提到的,Ω-3和Ω-6脂肪酸代謝之間存在競爭作用,這會影響過敏性皮炎犬體內(nèi)的促炎和抗炎因子的平衡,更高濃度的Ω-3脂肪酸通常表現(xiàn)出更強(qiáng)的抗炎作用[110,117]。
因此,Ω-3和Ω-6脂肪酸的比例非常重要,在確保犬的生理需求下,避免過高的Ω-6含量,以減少促炎因子在過敏性皮炎中的過度生成是設(shè)計合適比例的關(guān)鍵因素之一。一些研究已經(jīng)發(fā)現(xiàn),通過設(shè)置不同比例的Ω-3和Ω-6脂肪酸含量,例如Ω-3:Ω-6為1∶5的時候,可以顯著減輕犬AD瘙癢的癥狀,并降低皮膚中前列腺素E2和白三烯B4的合成[56]。然而,在另外一項研究中,其中一種飲食的Ω-3:Ω-6的比例低于1∶5的飲食表現(xiàn)出更好的臨床改善作用[118]。這種差異可能歸因于Ω-3、Ω-6來源、劑量、飼喂時長、食物中其他成分不同。Ω-3和Ω-6脂肪酸的比例仍然是一個關(guān)鍵而復(fù)雜的問題,需要進(jìn)一步的研究來明確最佳比例,同時應(yīng)考慮患病犬的個體差異和脂肪酸的來源等因素。
3.2 水解蛋白
食物過敏通常由食物中的蛋白質(zhì)引發(fā),隨著商業(yè)寵物食品的蛋白質(zhì)來源日益多樣化,不同的蛋白質(zhì)來源可能導(dǎo)致過敏的風(fēng)險也不同。因此,蛋白質(zhì)的來源和處理方式可能是犬食物過敏的主要影響因素[119]。
在商業(yè)寵物食品中,大豆和雞肉是常用的蛋白質(zhì)來源。研究表明,攝入大豆蛋白和玉米蛋白等植物性蛋白會增加抗原特異性IgE濃度,并誘導(dǎo)淋巴細(xì)胞介導(dǎo)的過敏反應(yīng)[95,120]。然而,通過水解處理大豆或者雞肉后,過敏癥狀往往會減輕,甚至消失[95-97]。值得注意的是,并非所有的水解蛋白都能夠完全防止免疫反應(yīng)。例如,對雞肉過敏的犬,飼喂含水解家禽羽毛蛋白的日糧沒有再次出現(xiàn)皮膚瘙癢癥狀,但水解雞肝蛋白的日糧卻導(dǎo)致40%的犬再次出現(xiàn)皮膚瘙癢,出現(xiàn)這種差異的原因可能在于家禽羽毛蛋白水解后,有95%的肽lt;1 ku,而水解雞肝蛋白中,78%的肽lt;1 ku,約7%gt;5 ku[121]。這表明在水解雞肝蛋白中存在更大的殘留肽,同時家禽羽毛和禽肉蛋白質(zhì)結(jié)構(gòu)也可能不同。另外,對雞肉過敏的犬有可能對魚類也產(chǎn)生過敏,因為在蛋白質(zhì)的組成上存在相似之處,這被稱為食物過敏原的交叉反應(yīng)[122]。
然而,即使是低分子量蛋白質(zhì)和多肽也不一定能完全避免食物過敏反應(yīng)。研究發(fā)現(xiàn),蛋白質(zhì)和肽的分子量為1.5~3.5 ku也能刺激輔助性T淋巴細(xì)胞產(chǎn)生免疫反應(yīng)[123]。因此,通常的水解蛋白飲食可能不適用于所有患食物過敏的犬。另外,不同蛋白來源引發(fā)過敏的分子量也不同,例如,大豆過敏原分子量為20~75 ku[124],而羊肉和牛肉引發(fā)過敏原的分子量為51~58 ku[125]。因此,研究者需要關(guān)注不同食物過敏原的蛋白分子量,并注意其他碳水化合物來源(如玉米和馬鈴薯)中可能含有超過10 ku的蛋白質(zhì)[126]。
此外,水解蛋白的配方成本通常比普通飲食高[127],因此在選擇食物時需要考慮實驗設(shè)計和配方的質(zhì)量。所以,確定引發(fā)食物過敏的蛋白質(zhì)的分子量和不致敏的最小分子量可能是制定有效低敏飲食的關(guān)鍵因素。這可能也是市面上一些低敏日糧的效果沒有達(dá)到預(yù)期效果的原因之一。因此,在選擇水解蛋白飲食時,建議臨床醫(yī)生仔細(xì)權(quán)衡其利弊,更加謹(jǐn)慎地選擇有效的飲食[128]。
3.3 多酚
植物中的多酚在人類和犬的過敏性皮膚疾病研究中已經(jīng)受到廣泛的關(guān)注。多酚具有多種潛在功能,包括強(qiáng)大的抗氧化活性、免疫調(diào)節(jié)作用、皮膚屏障的保護(hù)和修復(fù)能力[129-132]。尤其是對于非健康狀態(tài)的犬,富含多酚的植物提取物尤為受到關(guān)注[59]。多酚是一類天然化合物,由一個芳香環(huán)和多個酚基組成,主要分為類黃酮(黃酮醇、黃酮、異黃酮、黃烷酮和黃烷醇)和非類黃酮化合物(二苯乙烯、酚酸),它們主要存在于水果、蔬菜和中草藥中[133]。
一些研究表明,多酚在犬AD中可能具有治療潛力。例如,Massimini等[134]研究發(fā)現(xiàn),黃酮木犀草素、二苯乙烯苦參醇和大麻二酚的組合可以干擾Th1和Th2介導(dǎo)的炎癥相關(guān)的標(biāo)記基因的表達(dá)、抑制免疫細(xì)胞增殖和減輕皮膚感覺神經(jīng)元瘙癢感的傳遞。雖然是體外試驗,但該作者認(rèn)為多酚可以作為功能性膳食營養(yǎng)應(yīng)用于犬過敏性皮炎上的治療。在Marsella等[135]的研究中,富含槲皮素、異屬李素、山萘酚成分的獼猴桃制劑(30 mg·kg-1),在飼喂特應(yīng)性皮炎犬8周后,改善了輕中度的皮炎癥狀。
此外,多酚也逐漸被添加到犬糧中,對疾病起到一定的治療作用。Witzel-Rollins等[136]對患有皮膚問題的犬飼喂含以迷迭香、綠茶、柑橘漿、釀酒米為多酚來源的試驗飲食,結(jié)果顯示,患病犬的瘙癢和皮膚炎癥都明顯改善。除此之外,含有多酚的姜黃和甘草提取物也在AD犬上被證明,可以通過參與細(xì)胞介導(dǎo)的免疫反應(yīng),從而改善犬瘙癢癥狀[137]。然而,在這些研究中多酚并不是唯一的因素,因為飲食中還含有不飽和脂肪酸(如魚油、亞麻籽),前面已經(jīng)闡述過不飽和脂肪酸對皮膚同樣有改善作用。因此,瘙癢和皮炎的改善可能是多酚、不飽和脂肪酸和抗氧化劑共同作用的結(jié)果。
近期研究還發(fā)現(xiàn),添加多種植物(香蜂草、百里香、迷迭香、苦艾草、檸檬草和胡蘆巴)到犬糧中可以減少跳蚤數(shù)量,并減輕瘙癢癥狀,這一效果在貓身上也得到驗證[93-94]。這可能與植物通過產(chǎn)生多種多酚來抵御不同的食草昆蟲,影響它們的攝食和排卵有關(guān)[138]。因此長期攝入含多酚的膳食物質(zhì)似乎能夠影響體外寄生蟲繁殖和生長。
雖然大量的體內(nèi)外試驗證據(jù)支持多酚在過敏性皮膚疾病中的作用,但在犬身上的研究仍然不足,尤其是作為功能性成分添加在日糧中的研究。這可能因為植物提取物并不是必需的營養(yǎng)素來源,同時也需要完整的試驗來確定植物成分在長期食用中的劑量和作用。然而,植物提取物的抗炎和抗氧化特性在預(yù)防和改善犬過敏性皮炎中具有潛在作用,將來需要更多的犬臨床試驗研究來證明這一點。
3.4 益生菌
益生菌被定義為“在攝入一定量時,對宿主健康有益的微生物”。益生菌在調(diào)控腸道微生物方面發(fā)揮了重要作用。益生菌可通過改變腸道微生物組成、調(diào)節(jié)腸道內(nèi)短鏈脂肪酸等代謝產(chǎn)物的釋放和參與全身的免疫系統(tǒng),對健康產(chǎn)生積極影響[139]。不僅在腸道疾病中,益生菌的使用也引起過敏性皮膚疾病研究者的興趣,因為在這類疾病中,腸道微生物組往往出現(xiàn)生態(tài)平衡失調(diào),某些細(xì)菌過度生長導(dǎo)致腸道屏障受損,通透性增加,讓更多的過敏原通過黏膜引發(fā)免疫反應(yīng),尤其是在FAD和AD等疾病中[140]。
乳酸桿菌是應(yīng)用最廣泛的一類益生菌,它具有抑制潛在腸道致病菌、維持腸道和皮膚屏障功能,以及平衡Th1/Th2免疫反應(yīng)的作用[64]。在AD犬的研究中,使用沙克乳酸桿菌Probio-65[1 g(體重lt;5 kg)或2 g(體重gt;5 kg),2×109CFU·g-1][65]和副干酪乳酪桿菌K71(5 mg·kg-1)[66]的益生菌制劑后,瘙癢和皮膚的炎癥程度都有明顯改善。另一項研究發(fā)現(xiàn),對螨蟲過敏的幼犬持續(xù)飼喂鼠李糖乳酪桿菌(LGG,100×109 CFU)直至6月齡,3年后隨訪發(fā)現(xiàn),用螨蟲過敏原刺激后,血清過敏原特異性IgE和部分臨床癥狀表現(xiàn)降低,表明早期使用LGG具有長期的免疫作用[141],這對于易患過敏性皮炎的犬種來說具有重要意義。因此,益生菌常被單獨制作成制劑或者添加到犬糧中,以作為功能性飲食的一部分[142]。然而,需要注意的是,由于犬糧制作工藝的限制,難以保證益生菌的有效性,因此益生元的使用被認(rèn)為更有優(yōu)勢[143]。
此外,犬腸道生物和皮膚免疫以及皮膚微生物之間的關(guān)系仍不完全清楚[144]。目前,已知在人類過敏性皮膚疾病中,腸道生態(tài)的失衡會導(dǎo)致代謝產(chǎn)物和微生物DNA通過黏膜進(jìn)入血液,從而間接影響皮膚的免疫反應(yīng)和皮膚微生物的失衡[62,145]。因此,需要進(jìn)一步的研究來闡明犬過敏性皮膚疾病中腸道微生物的作用機(jī)制和途徑,為此提供科學(xué)基礎(chǔ),以便更好地選擇和使用益生菌。
3.5 維生素和礦物質(zhì)
營養(yǎng)素的缺乏會引起犬相關(guān)皮膚疾病,這一點在眾多營養(yǎng)研究中已經(jīng)得到證實[119]。然而,隨著商業(yè)寵物食品的興起,因為營養(yǎng)素缺乏而導(dǎo)致的皮膚病越來越少見。寵物主人和研究者已經(jīng)不滿足于滿足犬的最低生理需求,它們開始考慮通過額外補(bǔ)充維生素和礦物質(zhì)來改善患有皮膚病的犬的健康狀況。
在人類皮膚疾病的研究中,維生素D3被證明可以調(diào)節(jié)角質(zhì)形成細(xì)胞的增殖、分化和表皮屏障的形成,同時被認(rèn)為是抗菌肽基因表達(dá)的誘導(dǎo)劑,而抗菌肽在皮膚表面發(fā)揮重要的抗感染作用[146]。一項研究發(fā)現(xiàn),AD犬口服維生素D3(300 IU·kg-1,8周)后,瘙癢和皮膚損傷程度都明顯下降[147]。然而,需要注意的是,在維生素D的補(bǔ)充期間,血清中的鈣離子濃度可能會升高,存在高鈣血癥的風(fēng)險[148],因此,在補(bǔ)充維生素D時需要監(jiān)測鈣離子濃度。維生素E是一種強(qiáng)大的抗氧化劑,能夠保護(hù)細(xì)胞膜免受自由基的氧化損傷,降低氧化應(yīng)激和炎癥,并改善皮膚角質(zhì)層的保水能力[149],然而在過敏性皮膚疾病犬中發(fā)現(xiàn),血漿維生素E濃度是低于健康犬的[150]。因此,通過補(bǔ)充維生素E成為皮膚治療的另一方向。研究表明,補(bǔ)充維生素E后,AD犬的皮膚紅斑、損傷和脫毛得到改善[151]。此外,維生素E和硒的組合也可以減輕犬螨蟲感染引起的氧化應(yīng)激狀態(tài)[152],因此,可以作為治療螨蟲感染的補(bǔ)充劑。除了單獨使用維生素補(bǔ)充劑外,一項體外試驗從27種營養(yǎng)素篩選出5種在皮膚脂質(zhì)合成中表現(xiàn)明顯的成分,泛酸、煙酰胺、肌醇、膽堿、組氨酸等添加到日糧中飼喂9周,犬經(jīng)皮失水明顯降低,皮膚保水能力得到增強(qiáng)[55]。
除了維生素,礦物質(zhì)鋅在皮膚上的作用也常被研究,皮膚是鋅含量第三高的器官,鋅的缺乏會影響皮膚角質(zhì)形成細(xì)胞、朗格漢斯細(xì)胞的穩(wěn)態(tài)和輔助T細(xì)胞的正常分化[153-154]。Mcfadden等[155]給予AD犬1.6 mg·(kg·d)-1的鋅補(bǔ)充,皮膚瘙癢和炎癥有所改善,與糖皮質(zhì)激素一起使用時效果更好。盡管目前還沒有研究表明在犬糧中的鋅含量是否會對過敏性皮膚疾病有作用,但是犬糧中鋅的存在形式和來源是影響鋅生物利用度重要因素,也是鋅缺乏的主要因素之一,尤其是在低成本的商業(yè)犬糧中[156]。因此,提高犬糧中鋅生物利用度是犬過敏性皮膚病飲食的研究方向之一。
4 小 結(jié)
膳食調(diào)控在犬過敏性皮膚病中具有多重作用,包括控制過敏原、改善臨床癥狀以及調(diào)節(jié)腸道和皮膚微生物。食物過敏是犬過敏性皮膚病的一種常見原因。通過食物激發(fā)試驗和飲食消除試驗,可以確定引發(fā)過敏的食物并采取相應(yīng)的措施。使用水解蛋白飲食可以顯著降低蛋白質(zhì)的致敏性。最近的研究還發(fā)現(xiàn),植物多酚的攝入可能對控制跳蚤感染有一定作用,盡管研究仍較有限。不飽和脂肪酸對皮膚的作用已經(jīng)得到充分研究,無論是局部外用還是口服都具有潛在的益處。多酚等植物提取物在改善炎癥和瘙癢方面具有一定的效果,尤其是對于特應(yīng)性皮膚炎。益生菌可以調(diào)節(jié)腸道微生物群,影響免疫系統(tǒng),對改善特應(yīng)性皮膚炎等疾病的癥狀有益。維生素D3、維生素E、鋅等營養(yǎng)素對皮膚健康和免疫系統(tǒng)的調(diào)節(jié)起著重要作用,補(bǔ)充這些營養(yǎng)素可能有助于改善皮膚癥狀。
需要注意的是,長期的單一添加某種營養(yǎng)補(bǔ)充劑來改善犬皮膚癥狀可能會導(dǎo)致飲食的失衡[109],因此在選擇補(bǔ)充劑時需要建立在明確的營養(yǎng)缺乏和疾病狀態(tài)的基礎(chǔ)上。未來的研究需要從遺傳、免疫、微生物組和營養(yǎng)干預(yù)等多角度深入探討飲食對犬過敏性疾病的影響和機(jī)制,開展更多的臨床試驗,評估不同治療策略的有效性,以改善患犬的生活質(zhì)量。
參考文獻(xiàn)(References):
[1] 古麗沙哈提·孜亞西. 談犬過敏性皮炎的臨床表現(xiàn)及診療方法[J]. 畜禽業(yè), 2016(4):93-94.
GULISHAHATI·Z Y D. To discuss the clinical manifestations and diagnosis and treatment of canine. atopic dermatitis[J]. Livestock and Poultry Industry, 2016(4):93-94. (in Chinese)
[2] 胥輝豪, 李淑敏, 林德貴, 等. 犬貓過敏性皮膚病的診療[C]//第六屆西部寵物醫(yī)師大會論文集. 成都:中國畜牧獸醫(yī)學(xué)會, 2017:99-104.
XU H H, LI S M, LIN D G, et al. Diagnosis and treatment of allergic skin diseases in dogs and. cats[C]//The 6th Western Small Animal Veterinarian Congress. Chengdu: Chinese Association of Animal Science and Veterinary Medicine, 2017:99-104. (in Chinese)
[3] 曾玉淇, 李德均, 官瓊珍, 等. 犬貓皮膚病的研究進(jìn)展[J]. 今日畜牧獸醫(yī), 2021, 37(3):62-65.
ZENG Y Q, LI D J, GUAN Q Z, et al. Research progress of canine and feline skin diseases[J]. Animal Husbandry and Veterinary Medicine Today, 2021, 37(3):62-65. (in Chinese)
[4] HENSEL P, SANTORO D, FAVROT C, et al. Canine atopic dermatitis:detailed guidelines for diagnosis and allergen identification[J]. BMC Vet Res, 2015, 11:196.
[5] SAUV "F. Use of topical glucocorticoids in veterinary dermatology[J]. Can Vet J, 2019, 60(7):785-788.
[6] VARGO C, BANOVIC F. Is injectable methylprednisolone acetate valuable for treatment of feline hypersensitivity dermatitis?[J]. Vet Dermatol, 2021, 32(4):402-403.
[7] SANTORO D. Therapies in canine atopic dermatitis:an update[J]. Vet Clin North Am Small Anim Pract, 2019, 49(1):9-26.
[8] MARSELLA R, DOERR K, GONZALES A, et al. Oclacitinib 10 years later:lessons learned and directions for the future[J]. J Am Vet Med Assoc, 2023, 261(S1):S36-S47.
[9] OUTERBRIDGE C A, JORDAN T J M. Current knowledge on canine atopic dermatitis:pathogenesis and treatment[J]. Adv Small Anim Care, 2021, 2:101-115.
[10] KIECKA A, MACURA B, SZCZEPANIK M. Modulation of allergic contact dermatitis via gut microbiota modified by diet, vitamins, probiotics, prebiotics, and antibiotics[J]. Pharmacol Rep, 2023, 75(2):236-248.
[11] MICH L’OV "A, TAK" ACˇG OV "M, KARASOV "M, et al. Comparative study of classical and alternative therapy in dogs with allergies[J]. Animals (Basel), 2022, 12(14):1832.
[12] ANTURANIEMI J, ZALD VAR-L PEZ S, SAVELKOUL H F J, et al. The effect of atopic dermatitis and diet on the skin transcriptome in Staffordshire bull terriers[J]. Front Vet Sci, 2020, 7:552251.
[13] DE SANTIAGO M S, ARRIBAS J L G, LLAMAS Y M, et al. Randomized, double-blind, placebo-controlled clinical trial measuring the effect of a dietetic food on dermatologic scoring and pruritus in dogs with atopic dermatitis[J]. BMC Vet Res, 2021, 17(1):354.
[14] NUTTALL T J, MARSELLA R, ROSENBAUM M R, et al. Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs[J]. J Am Vet Med Assoc, 2019, 254(11):1291-1300.
[15] NOLI C. Assessing quality of life for pets with dermatologic disease and their owners[J]. Vet Clin North Am Small Anim Pract, 2019, 49(1):83-93.
[16] WILHEM S, KOVALIK M, FAVROT C. Breed-associated phenotypes in canine atopic dermatitis[J]. Vet Dermatol, 2011, 22(2):143-149.
[17] GRIFFIN C E, DEBOER D J. The ACVD task force on canine atopic dermatitis (XIV):clinical manifestations of canine atopic dermatitis[J]. Vet Immunol Immunopathol, 2001, 81(3-4):255-269.
[18] SHAW S C, WOOD J L N, FREEMAN J, et al. Estimation of heritability of atopic dermatitis in Labrador and Golden retrievers[J]. Am J Vet Res, 2004, 65(7):1014-1020.
[19] 李常興, 李雪梅, 張錫寶, 等. 南方漢族人特應(yīng)性皮炎中間絲聚合蛋白基因多態(tài)性檢測與分析[J]. 中華醫(yī)學(xué)遺傳學(xué)雜志, 2011, 28(5):572-574.
LI C X, LI X M, ZHANG X B, et al. Association of filaggrin gene polymorphism with atopic dermatitis in Southern Chinese Han population[J]. Chinese Journal of Medical Genetics, 2011, 28(5):572-574. (in Chinese)
[20] WOOD S H, OLLIER W E, NUTTALL T, et al. Despite identifying some shared gene associations with human atopic dermatitis the use of multiple dog breeds from various locations limits detection of gene associations in canine atopic dermatitis[J]. Vet Immunol Immunopathol, 2010, 138(3):193-197.
[21] TENGVALL K, KIERCZAK M, BERGVALL K, et al. Genome-wide analysis in German shepherd dogs reveals association of a locus on CFA 27 with atopic dermatitis[J]. PLoS Genet, 2013, 9(5):e1003475.
[22] WOOD S H, KE X Y, NUTTALL T, et al. Genome-wide association analysis of canine atopic dermatitis and identification of disease related SNPs[J]. Immunogenetics, 2009, 61(11-12):765-772.
[23] ROQUE J B, O’LEARY C A, DUFFY D L, et al. Atopic dermatitis in west highland white terriers is associated with a 1. 3-Mb region on CFA 17[J]. Immunogenetics, 2012, 64(3):209-217.
[24] BRZOZA Z, GRZESZCZAK W, ROGALA B, et al. PTPN22 polymorphism presumably plays a role in the genetic background of chronic spontaneous autoreactive urticaria[J]. Dermatology, 2012, 224(4):340-345.
[25] ROQUE J B, O’LEARY C A, KYAW-TANNER M, et al. Haplotype sharing excludes canine orthologous Filaggrin locus in atopy in west highland white terriers[J]. Anim Genet, 2009, 40(5):793-794.
[26] SHIMADA K, YOON J S, YOSHIHARA T, et al. Increased transepidermal water loss and decreased ceramide content in lesional and non-lesional skin of dogs with atopic dermatitis[J]. Vet Dermatol, 2009, 20(5-6):541-546.
[27] OLIVRY T. Is the skin barrier abnormal in dogs with atopic dermatitis?[J]. Vet Immunol Immunopathol, 2011, 144(1-2):11-16.
[28] LUGER T, AMAGAI M, DRENO B, et al. Atopic dermatitis:Role of the skin barrier, environment, microbiome, and therapeutic agents[J]. J Dermatol Sci, 2021, 102(3):142-157.
[29] REITER L V, TORRES S M F, WERTZ P W. Characterization and quantification of ceramides in the nonlesional skin of canine patients with atopic dermatitis compared with controls[J]. Vet Dermatol, 2009, 20(4):260-266.
[30] YOON J S, NISHIFUJI K, SASAKI A, et al. Alteration of stratum corneum ceramide profiles in spontaneous canine model of atopic dermatitis[J]. Exp Dermatol, 2011, 20(9):732-736.
[31] POPA I, REMOUE N, OSTA B, et al. The lipid alterations in the stratum corneum of dogs with atopic dermatitis are alleviated by topical application of a sphingolipid-containing emulsion[J]. Clin Exp Dermatol, 2012, 37(6):665-671.
[32] POPA I, REMOUE N, HOANG L T, et al. Atopic dermatitis in dogs is associated with a high heterogeneity in the distribution of protein-bound lipids within the stratum corneum[J]. Arch Dermatol Res, 2011, 303(6):433-440.
[33] SANTORO D, MARSELLA R, PUCHEU-HASTON C M, et al. Review:pathogenesis of canine atopic dermatitis:skin barrier and host-micro-organism interaction[J]. Vet Dermatol, 2015, 26(2):84-e25.
[34] DAVID BOOTHE W, TARBOX J A, TARBOX M B. Atopic dermatitis:pathophysiology[M]//FORTSON E A, FELDMAN S R, STROWD L C. Management of Atopic Dermatitis:Methods and Challenges. Cham:Springer, 2017:21-37.
[35] DEBOER D J, MARSELLA R. The ACVD task force on canine atopic dermatitis (XII):the relationship of cutaneous infections to the pathogenesis and clinical course of canine atopic dermatitis[J]. Vet Immunol Immunopathol, 2001, 81(3-4):239-249.
[36] MCEWAN N A, MELLOR D, KALNA G. Adherence by Staphylococcus intermedius to canine corneocytes:a preliminary study comparing noninflamed and inflamed atopic canine skin[J]. Vet Dermatol, 2006, 17(2):151-154.
[37] SIMOU C, THODAY K L, FORSYTHE P J, et al. Adherence of Staphylococcus intermedius to corneocytes of healthy and atopic dogs:effect of pyoderma, pruritus score, treatment and gender[J]. Vet Dermatol, 2005, 16(6):385-391.
[38] MEASON-SMITH C, OLIVRY T, LAWHON S D, et al. Malassezia species dysbiosis in natural and allergen-induced atopic dermatitis in dogs[J]. Med Mycol, 2020, 58(6):756-765.
[39] BOND R, MORRIS D O, GUILLOT J, et al. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats:clinical consensus guidelines of the world association for veterinary dermatology[J]. Vet Dermatol, 2020, 31(1):73-77.
[40] MARTINS L M L. Allergy to fungi in veterinary medicine:Alternaria, dermatophytes and Malassezia pay the Bill?。跩]. J Fungi (Basel), 2022, 8(3):235.
[41] BLICHARZ L, RUDNICKA L, SAMOCHOCKI Z. Staphylococcus aureus:an underestimated factor in the pathogenesis of atopic dermatitis?[J]. Postepy Dermatol Alergol, 2019, 36(1):11-17.
[42] NAKAMURA Y, OSCHERWITZ J, CEASE K B, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells[J]. Nature, 2013, 503(7476):397-401.
[43] SAKAMOTO M, ASAHINA R, KAMISHINA H, et al. Transcription of thymic stromal lymphopoietin via toll-like receptor 2 in canine keratinocytes:a possible association of Staphylococcus spp. in the deterioration of allergic inflammation in canine atopic dermatitis[J]. Vet Dermatol, 2016, 27(3):184-e46.
[44] BIZIKOVA P, SANTORO D, MARSELLA R, et al. Review:clinical and histological manifestations of canine atopic dermatitis[J]. Vet Dermatol, 2015, 26(2):79-e24.
[45] MAJEWSKA A, GAJEWSKA M, DEMBELE K, et al. Lymphocytic, cytokine and transcriptomic profiles in peripheral blood of dogs with atopic dermatitis[J]. BMC Vet Res, 2016, 12(1):174.
[46] SCHLOTTER Y M, RUTTEN V P M G, RIEMERS F M, et al. Lesional skin in atopic dogs shows a mixed type-1 and type-2 immune responsiveness[J]. Vet Immunol Immunopathol, 2011, 143(1-2):20-26.
[47] FRH S P, SAIKIA M, EULE J, et al. Elevated circulating Th2 but not group 2 innate lymphoid cell responses characterize canine atopic dermatitis[J]. Vet Immunol Immunopathol, 2020, 221:110015.
[48] HILL P B, OLIVRY T. The ACVD task force on canine atopic dermatitis (V):biology and role of inflammatory cells in cutaneous allergic reactions[J]. Vet Immunol Immunopathol, 2001, 81(3-4):187-198.
[49] MARSELLA R. Advances in our understanding of canine atopic dermatitis[J]. Vet Dermatol, 2021, 32(6):547-e151.
[50] OETJEN L K, MACK M R, FENG J, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch[J]. Cell, 2017, 171(1):217-228. e13.
[51] OLIVRY T, MAYHEW D, PAPS J S, et al. Early Activation of Th2/Th22 inflammatory and pruritogenic pathways in acute canine atopic dermatitis skin lesions[J]. J Invest Dermatol, 2016, 136(10):1961-1969.
[52] FURUE M, FURUE M. Interleukin-31 and pruritic skin[J]. J Clin Med, 2021, 10(9):1906.
[53] CORNELISSEN C, LSCHER-FIRZLAFF J, BARON J M, et al. Signaling by IL-31 and functional consequences[J]. Eur J Cell Biol, 2012, 91(6-7):552-566.
[54] MICHELS G M, RAMSEY D S, WALSH K F, et al. A blinded, randomized, placebo-controlled, dose determination trial of lokivetmab (ZTS-00103289), a caninized, anti-canine IL-31 monoclonal antibody in client owned dogs with atopic dermatitis[J]. Vet Dermatol, 2016, 27(6):478-e129.
[55] WATSON A L, FRAY T R, BAILEY J, et al. Dietary constituents are able to play a beneficial role in canine epidermal barrier function[J]. Exp Dermatol, 2006, 15(1):74-81.
[56] POPA I, PIN D, REMOU "N, et al. Analysis of epidermal lipids in normal and atopic dogs, before and after administration of an oral omega-6/omega-3 fatty acid feed supplement. A pilot study[J]. Vet Res Commun, 2011, 35(8):501-509.
[57] OLIVRY T, MARSELLA R, HILLIER A. The ACVD task force on canine atopic dermatitis (XXIII):are essential fatty acids effective?[J]. Vet Immunol Immunopathol, 2001, 81(3-4):347-362.
[58] SCHUMANN J, BASIOUNI S, GCK T, et al. Treating canine atopic dermatitis with unsaturated fatty acids:the role of mast cells and potential mechanisms of action[J]. J Anim Physiol Anim Nutr (Berl), 2014, 98(6):1013-1020.
[59] MAGRONE T, JIRILLO E. Influence of polyphenols on allergic immune reactions:mechanisms of action[J]. Proc Nutr Soc, 2012, 71(2):316-321.
[60] SINGH A, HOLVOET S, MERCENIER A. Dietary polyphenols in the prevention and treatment of allergic diseases[J]. Clin Exp Allergy, 2011, 41(10):1346-1359.
[61] FRAY T R, WATSON A L, CROFT J M, et al. A combination of aloe vera, curcumin, vitamin C, and taurine increases canine fibroblast migration and decreases tritiated water diffusion across canine keratinocytes in vitro[J]. J Nutr, 2004, 134(8):2117s-2119s.
[62] LEE S Y, LEE E, PARK Y M, et al. Microbiome in the gut-skin axis in atopic dermatitis[J]. Allergy Asthma Immunol Res, 2018, 10(4):354-362.
[63] FANG Z F, LI L Z, ZHANG H, et al. Gut microbiota, probiotics, and their interactions in prevention and treatment of atopic dermatitis:a review[J]. Front Immunol, 2021, 12:720393.
[64] XIE A N, CHEN A L, CHEN Y Q, et al. Lactobacillus for the treatment and prevention of atopic dermatitis:clinical and experimental evidence[J]. Front Cell Infect Microbiol, 2023, 13:1137275.
[65] KIM H, RATHER I A, KIM H, et al. A double-blind, placebo controlled-trial of a probiotic strain lactobacillus sakei probio-65 for the prevention of canine atopic dermatitis[J]J Microbiol Biotechnol, 2015, 25(11):1966-1969.
[66] OHSHIMA-TERADA Y, HIGUCHI Y, KUMAGAI T, et al. Complementary effect of oral administration of Lactobacillus paracasei K71 on canine atopic dermatitis[J]. Vet Dermatol, 2015, 26(5):350-e75.
[67] 林德貴. 犬貓過敏性皮膚病的診療[C]//第17次全國犬業(yè)科技學(xué)術(shù)研討會論文集. 太原:中國畜牧獸醫(yī)學(xué)會, 1994:48-52.
LIN D G. Diagnosis and treatment of allergic skin diseases in dogs and cats[C]//The 17th National Symposium on Canine Science and Technology. Taiyuan: Chinese Association of Animal Science and Veterinary Medicine, 1994:48-52. (in Chinese)
[68] SOOD N K, MEKKIB B, SINGLA L D, et al. Cytopathology of parasitic dermatitis in dogs[J]. J Parasit Dis, 2012, 36(1):73-77.
[69] SOUSA C A, HALLIWELL R E W. The ACVD task force on canine atopic dermatitis (XI):the relationship between arthropod hypersensitivity and atopic dermatitis in the dog[J]. Vet Immunol Immunopathol, 2001, 81(3-4):233-237.
[70] WILKERSON M J, BAGLADI-SWANSON M, WHEELER D W, et al. The immunopathogenesis of flea allergy dermatitis in dogs, an experimental study[J]. Vet Immunol Immunopathol, 2004, 99(3-4):179-192.
[71] WUERSCH K, BRACHELENTE C, DOHERR M, et al. Immune dysregulation in flea allergy dermatitis—a model for the immunopathogenesis of allergic dermatitis[J]. Vet Immunol Immunopathol, 2006, 110(3-4):311-323.
[72] SOUSA C A. Fleas, flea allergy, and flea control:a review[J]. Dermatol Online J, 1997, 3(2):7.
[73] IANNINO F, SULLI N, MAITINO A, et al. Fleas of dog and cat:species, biology and flea-borne diseases[J]. Vet Ital, 2017, 53(4):277-288.
[74] THOMSON P, CARRE O N, N EZ A. Main mites associated with dermatopathies present in dogs and other members of the canidae family[J]. Open Vet J, 2023, 13(2):131-142.
[75] CAO H, LIU Z G. Clinical significance of dust mite allergens[J]. Mol Biol Rep, 2020, 47(8):6239-6246.
[76] MAEDA S, MAEDA S, SHIBATA S, et al. House dust mite major allergen der f 1 enhances proinflammatory cytokine and chemokine gene expression in a cell line of canine epidermal keratinocytes[J]. Vet Immunol Immunopathol, 2009, 131(3-4):298-302.
[77] FERN NDEZ-CALDAS E. On mite allergy in dogs and humans[J]. Int Arch Allergy Immunol, 2013, 160(4):329-330.
[78] MCCALL C, HUNTER S, STEDMAN K, et al. Characterization and cloning of a major high molecular weight house dust mite allergen (der f 15) for dogs[J]. Vet Immunol Immunopathol, 2001, 78(3-4):231-247.
[79] STAHL J, PAPS J, BUMER W, et al. Dermatophagoides farinae house dust mite allergen challenges reduce stratum corneum ceramides in an experimental dog model of acute atopic dermatitis[J]. Vet Dermatol, 2012, 23(6):497-e97.
[80] OLIVRY T, MUELLER R S. Critically appraised topic on adverse food reactions of companion animals (3):prevalence of cutaneous adverse food reactions in dogs and cats[J]. BMC Vet Res, 2016, 13(1):51.
[81] BVSC D G. Muller and Kirk’s small animal dermatology[J]. N Z Vet J, 2014, 62(4):234.
[82] VERLINDEN A, HESTA M, MILLET S, et al. Food allergy in dogs and cats:a review[J]. Crit Rev Food Sci Nutr, 2006, 46(3):259-273.
[83] JACKSON H A. Food allergy in dogs and cats;current perspectives on etiology, diagnosis, and management[J]. J Am Vet Med Assoc, 2023, 261(S1):S23-S29.
[84] PUCHEU-HASTON C M, BIZIKOVA P, EISENSCHENK M N C, et al. Review:the role of antibodies, autoantigens and food allergens in canine atopic dermatitis[J]. Vet Dermatol, 2015, 26(2):115-e30.
[85] PICCO F, ZINI E, NETT C, et al. A prospective study on canine atopic dermatitis and food-induced allergic dermatitis in Switzerland[J]. Vet Dermatol, 2008, 19(3):150-155.
[86] MUELLER R S, OLIVRY T. Critically appraised topic on adverse food reactions of companion animals (4):can we diagnose adverse food reactions in dogs and cats with in vivo or in vitro tests?[J]. BMC Vet Res, 2017, 13(1):275.
[87] HO K K, CAMPBELL K L, LAVERGNE S N. Contact dermatitis:a comparative and translational review of the literature[J]. Vet Dermatol, 2015, 26(5):314-e67.
[88] VOCANSON M, HENNINO A, ROZIRES A, et al. Effector and regulatory mechanisms in allergic contact dermatitis[J]. Allergy, 2009, 64(12):1699-1714.
[89] CHAMBERLAIN K W. Allergic contact dermatitis[J]. Vet Clin North Am, 1974, 4(1):147-152.
[90] OLIVRY T, PR LAUD P, H RIPRET D, et al. Allergic contact dermatitis in the dog:principles and diagnosis[J]. Vet Clin North Am Small Anim Pract, 1990, 20(6):1443-1456.
[91] POWELL K, FOSTER C, EVANS S. Environmental risk assessment of veterinary medicines[J]. Vet Rec, 2018, 183(24):752.
[92] HORSEY J. Environmental dangers of veterinary antiparasitic agents[J]. Vet Rec, 2018, 183(21):662.
[93] MOOG F, PLICHART G V, BLUA J L, et al. Evaluation of a plant-based food supplement to control flea populations in dogs:a prospective double-blind randomized study[J]. Int J Parasitol Drugs Drug Resist, 2020, 12:35-38.
[94] BANULS D, BRUN J, BLUA J L, et al. A dietary plant extract formulation helps reduce flea populations in cats:a double-blind randomized study[J]. Pharmaceuticals (Basel), 2023, 16(2):195.
[95] JACKSON H A, JACKSON M W, COBLENTZ L, et al. Evaluation of the clinical and allergen specific serum immunoglobulin E responses to oral challenge with cornstarch, corn, soy and a soy hydrolysate diet in dogs with spontaneous food allergy[J]. Vet Dermatol, 2003, 14(4):181-187.
[96] PUIGDEMONT A, BRAZ S P, SERRA M, et al. Immunologic responses against hydrolyzed soy protein in dogs with experimentally induced soy hypersensitivity[J]. Am J Vet Res, 2006, 67(3):484-488.
[97] LOEFFLER A, LLOYD D H, BOND R, et al. Dietary trials with a commercial chicken hydrolysate diet in 63 pruritic dogs[J]. Vet Rec, 2004, 154(17):519-522.
[98] OLIVRY T, BEXLEY J, MOUGEOT I. Extensive protein hydrolyzation is indispensable to prevent IgE-mediated poultry allergen recognition in dogs and cats[J]. BMC Vet Res, 2017, 13(1):251.
[99] YOON J S, NISHIFUJI K, IWASAKI T. Supplementation with eicosapentaenoic acid and linoleic acid increases the production of epidermal ceramides in in vitro canine keratinocytes[J]. Vet Dermatol, 2020, 31(5):419-e112.
[100] WEYLANDT K H, CHIU C Y, GOMOLKA B, et al. Omega-3 fatty acids and their lipid mediators:towards an understanding of resolvin and protectin formation[J]. Prostaglandins Other Lipid Mediat, 2012, 97(3-4):73-82.
[101] BAUER J E. Therapeutic use of fish oils in companion animals[J]. J Am Vet Med Assoc, 2011, 239(11):1441-1451.
[102] BALIC' A, VLAIC' D, UUL K, et al. Omega-3 versus omega-6 polyunsaturated fatty acids in the prevention and treatment of inflammatory skin diseases[J]. Int J Mol Sci, 2020, 21(3):741.
[103] ABBA C, MUSSA P P, VERCELLI A, et al. Essential fatty acids supplementation in different-stage atopic dogs fed on a controlled diet[J]. J Anim Physiol Anim Nutr (Berl), 2005, 89(3-6):203-207.
[104] ELISIA I, YEUNG M, KOWALSKI S, et al. Omega 3 supplementation reduces C-reactive protein, prostaglandin E2 and the granulocyte/lymphocyte ratio in heavy smokers:an open-label randomized crossover trial[J]. Front Nutr, 2022, 9:1051418.
[105] KIRBY N A, HESTER S L, BAUER J E. Dietary fats and the skin and coat of dogs[J]. J Am Vet Med Assoc, 2007, 230(11):1641-1644.
[106] LOGAS D, KUNKLE G A. Double-blinded crossover study with marine oil supplementation containing high-dose icosapentaenoic acid for the treatment of canine pruritic skin disease[J]. Vet Dermatol, 1994, 5(3):99-104.
[107] MUELLER R S, FIESELER K V, FETTMAN M J, et al. Effect of omega-3 fatty acids on canine atopic dermatitis[J]. J Small Anim Pract, 2004, 45(6):293-297.
[108] BAUER J E. The essential nature of dietary omega-3 fatty acids in dogs[J]. J Am Vet Med Assoc, 2016, 249(11):1267-1272.
[109] MILLER W H JR. Nutritional considerations in small animal dermatology[J]. Vet Clin North Am Small Anim Pract, 1989, 19(3):497-511.
[110] MUELLER R S, FETTMAN M J, RICHARDSON K, et al. Plasma and skin concentrations of polyunsaturated fatty acids before and after supplementation with n-3 fatty acids in dogs with atopic dermatitis[J]. Am J Vet Res, 2005, 66(5):868-873.
[111] MLLER M R, LINEK M, L WENSTEIN C, et al. Evaluation of cyclosporine-sparing effects of polyunsaturated fatty acids in the treatment of canine atopic dermatitis[J]. Vet J, 2016, 210:77-81.
[112] BRUET V, MOSCA M, BRIAND A, et al. Clinical guidelines for the use of antipruritic drugs in the control of the most frequent pruritic skin diseases in dogs[J]. Vet Sci, 2022, 9(4):149.
[113] STOECKEL K, NIELSEN L H, FUHRMANN H, et al. Fatty acid patterns of dog erythrocyte membranes after feeding of a fish-oil based DHA-rich supplement with a base diet low in n-3 fatty acids versus a diet containing added n-3 fatty acids[J]. Acta Vet Scand, 2011, 53(1):57.
[114] HALL J A, PICTON R A, SKINNER M M, et al. The (n-3) fatty acid dose, independent of the (n-6) to (n-3) fatty acid ratio, affects the plasma fatty acid profile of normal dogs[J]. J Nutr, 2006, 136(9):2338-2344.
[115] MAGALH ES T R, LOUREN O A L, GREG RIO H, et al. Therapeutic effect of EPA/DHA supplementation in neoplastic and non-neoplastic companion animal diseases:a systematic review[J]. In Vivo, 2021, 35(3):1419-1436.
[116] WATSON T D G. Diet and skin disease in dogs and cats[J]. J Nutr, 1998, 128(12):S2783-s2789.
[117] DUNBAR B L, BIGLEY K E, BAUER J E. Early and sustained enrichment of serum n-3 long chain polyunsaturated fatty acids in dogs fed a flaxseed supplemented diet[J]. Lipids, 2010, 45(1):1-10.
[118] GLOS K, LINEK M, LOEWENSTEIN C, et al. The efficacy of commercially available veterinary diets recommended for dogs with atopic dermatitis[J]. Vet Dermatol, 2008, 19(5):280-287.
[119] HENSEL P. Nutrition and skin diseases in veterinary medicine[J]. Clinics in dermatology, 2010, 28(6):686-693.
[120] SUTO A, SUTO Y, ONOHARA N, et al. Food allergens inducing a lymphocyte-mediated immunological reaction in canine atopic-like dermatitis[J]. J Vet Med Sci, 2015, 77(2):251-254.
[121] BIZIKOVA P, OLIVRY T. A randomized, double-blinded crossover trial testing the benefit of two hydrolysed poultry-based commercial diets for dogs with spontaneous pruritic chicken allergy[J]. Vet Dermatol, 2016, 27(4):289-293,e69-e70.
[122] BEXLEY J, KINGSWELL N, OLIVRY T. Serum IgE cross-reactivity between fish and chicken meats in dogs[J]. Vet Dermatol, 2019, 30(1):25-35,e7-e8.
[123] MASUDA K, SATO A, TANAKA A, et al. Hydrolyzed diets may stimulate food-reactive lymphocytes in dogs[J]. J Vet Med Sci, 2020, 82(2):177-183.
[124] SERRA M, BRAZ S P, FONDATI A, et al. Assessment of IgE binding to native and hydrolyzed soy protein in serum obtained from dogs with experimentally induced soy protein hypersensitivity[J]. Am J Vet Res, 2006, 67(11):1895-1900.
[125] MART N ", SIERRA M P, GONZ LEZ J L, et al. Identification of allergens responsible for canine cutaneous adverse food reactions to lamb, beef and cow’s milk[J]. Vet Dermatol, 2004, 15(6):349-356.
[126] ROITEL O, BONNARD L, STELLA A, et al. Detection of IgE-reactive proteins in hydrolysed dog foods[J]. Vet Dermatol, 2017, 28(6):589-e143.
[127] SURATANNON N, PRAPANSILP P, SRINARONGSOOK A, et al. Cost-effectiveness of therapeutic infant formulas for cow’s milk protein allergy management[J]. Front Nutr, 2023, 10:1099462.
[128] OLIVRY T, BIZIKOVA P. A systematic review of the evidence of reduced allergenicity and clinical benefit of food hydrolysates in dogs with cutaneous adverse food reactions[J]. Vet Dermatol, 2010, 21(1):32-41.
[129] PASTORE S, LULLI D, FIDANZA P, et al. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system[J]. Antioxid Redox Signal, 2012, 16(4):314-328.
[130] CARBONE M L, LULLI D, PASSARELLI F, et al. Topical plant polyphenols prevent type I interferon signaling in the skin and suppress contact hypersensitivity[J]. Int J Mol Sci, 2018, 19(9):2652.
[131] LEE Y S, RYU H W, YANG W K, et al. A combination of Olea europaea leaf extract and Spirodela polyrhiza extract alleviates atopic dermatitis by modulating immune balance and skin barrier function in a 1-chloro-2, 4-dinitrobenzene-induced murine model[J]. Phytomedicine, 2021, 82:153407.
[132] TRESCH M, MEVISSEN M, AYRLE H, et al. Medicinal plants as therapeutic options for topical treatment in canine dermatology?A systematic review[J]. BMC Vet Res, 2019, 15(1):174.
[133] TANPRASERTSUK J, TATE D E, SHMALBERG J. Roles of plant-based ingredients and phytonutrients in canine nutrition and health[J]. J Anim Physiol Anim Nutr (Berl), 2022, 106(3):586-613.
[134] MASSIMINI M, DALLE VEDOVE E, BACHETTI B, et al. Polyphenols and cannabidiol modulate transcriptional regulation of Th1/Th2 inflammatory genes related to canine atopic dermatitis[J]. Front Vet Sci, 2021, 8:606197.
[135] MARSELLA R, MESSINGER L, ZABEL S, et al. A randomized, double-blind, placebo-controlled study to evaluate the effect of EFF1001, an Actinidia arguta (hardy kiwi) preparation, on CADESI score and pruritus in dogs with mild to moderate atopic dermatitis[J]. Vet Dermatol, 2010, 21(1):50-57.
[136] WITZEL-ROLLINS A, MURPHY M, BECVAROVA I, et al. Non-controlled, open-label clinical trial to assess the effectiveness of a dietetic food on pruritus and dermatologic scoring in atopic dogs[J]. BMC Vet Res, 2019, 15(1):220.
[137] WATSON A, ROSTAHER A, FISCHER N M, et al. A novel therapeutic diet can significantly reduce the medication score and pruritus of dogs with atopic dermatitis during a nine-month controlled study[J]. Vet Dermatol, 2022, 33(1):55-61,e17-e18.
[138] SINGH S, KAUR I, KARIYAT R. The multifunctional roles of polyphenols in plant-herbivore interactions[J]. Int J Mol Sci, 2021, 22(3):1442.
[139] ROUSSEAUX A, BROSSEAU C, BODINIER M. Immunomodulation of B lymphocytes by prebiotics, probiotics and synbiotics: application in pathologies[J]. Nutrients, 2023, 15(2):269.
[140] CRAIG J M. Atopic dermatitis and the intestinal microbiota in humans and dogs[J]. Vet Med Sci, 2016, 2(2):95-105.
[141] MARSELLA R, SANTORO D, AHRENS K. Early exposure to probiotics in a canine model of atopic dermatitis has long-term clinical and immunological effects[J]. Vet Immunol Immunopathol, 2012, 146(2):185-189.
[142] STROMPFOV "V, KUBAOV "I, LAUKOV "A. Health benefits observed after probiotic Lactobacillus fermentum CCM 7421 application in dogs[J]. Appl Microbiol Biotechnol, 2017, 101(16):6309-6319.
[143] PAWAR M M, PATTANAIK A K, SINHA D K, et al. Effect of dietary mannanoligosaccharide supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs[J]. J Anim Sci Technol, 2017, 59:11.
[144] FORSBERG A, WEST C E, PRESCOTT S L, et al. Pre- and probiotics for allergy prevention:time to revisit recommendations?[J]. Clin Exp Allergy, 2016, 46(12):1506-1521.
[145] GUIDI E E A, GRAMENZI A, PERSICO P, et al. Effects of feeding a hypoallergenic diet with a nutraceutical on fecal dysbiosis index and clinical manifestations of canine atopic dermatitis[J]. Animals (Basel), 2021, 11(10):2985.
[146] UMAR M, SASTRY K S, AL ALI F, et al. Vitamin D and the pathophysiology of inflammatory skin diseases[J]. Skin Pharmacol Physiol, 2018, 31(2):74-86.
[147] KLINGER C J, HOBI S, JOHANSEN C, et al. Vitamin D shows in vivo efficacy in a placebo-controlled, double-blinded, randomised clinical trial on canine atopic dermatitis[J]. Vet Rec, 2018, 182(14):406.
[148] HOUGHTON C C, LEW S Q. Long-term hypervitaminosis D-induced hypercalcaemia treated with glucocorticoids and bisphosphonates[J]. BMJ Case Rep, 2020, 13(4):e233853.
[149] BERARDESCA E, CAMELI N. Vitamin E supplementation in inflammatory skin diseases[J]. Dermatol Ther, 2021, 34(6):e15160.
[150] PLEVNIK KAPUN A, SALOBIR J, LEVART A, et al. Plasma and skin vitamin E concentrations in canine atopic dermatitis[J]. Vet Q, 2013, 33(1):2-6.
[151] PLEVNIK KAPUN A, SALOBIR J, LEVART A, et al. Vitamin E supplementation in canine atopic dermatitis:improvement of clinical signs and effects on oxidative stress markers[J]. Vet Rec, 2014, 175(22):560.
[152] BEHERA S K, DIMRI U, SINGH S K, et al. The curative and antioxidative efficiency of ivermectin and ivermectin+vitamin E-selenium treatment on canine Sarcoptes scabiei infestation[J]. Vet Res Commun, 2011, 35(4):237-244.
[153] WESSELS I, MAYWALD M, RINK L. Zinc as a gatekeeper of immune function[J]. Nutrients, 2017, 9(12):1286.
[154] OGAWA Y, KINOSHITA M, SHIMADA S, et al. Zinc in keratinocytes and langerhans cells:relevance to the epidermal homeostasis[J]. J Immunol Res, 2018, 2018:5404093.
[155] MCFADDEN R A, HEINRICH N A, HAARSTAD A C, et al. A double-blinded, randomized, controlled, crossover evaluation of a zinc methionine supplement as an adjunctive treatment for canine atopic dermatitis[J]. Vet Dermatol, 2017, 28(6):569-e138.
[156] PEREIRA A M, MAIA M R G, FONSECA A J M, et al. Zinc in dog nutrition, health and disease: a review[J]. Animals (Basel), 2021, 11(4):978.
(編輯 白永平)