摘要:雙硫死亡是近年來提出的一種新型細(xì)胞死亡方式,其本質(zhì)為煙酰胺腺嘌呤二核苷酸磷酸不足而導(dǎo)致的二硫化物應(yīng)激性死亡。非酒精性脂肪性肝?。∟AFLD)是一類以脂肪浸潤為主要病理特征,與胰島素抵抗和遺傳易感性密切相關(guān)的代謝性疾病。最新研究顯示,雙硫死亡產(chǎn)生的二硫化物應(yīng)激可導(dǎo)致肝細(xì)胞死亡,從而加快NAFLD的進(jìn)展。本文就雙硫死亡在NAFLD中的最新研究予以總結(jié)和分析,以期探討雙硫死亡在NAFLD中的應(yīng)用潛力,為NAFLD的防治提供新思路。
關(guān)鍵詞:非酒精性脂肪性肝?。浑p硫死亡;病理過程
非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease,NAFLD)是指除外酒精和其他明確的肝損害因素所致,以肝脂肪變性為主要特征的臨床病理綜合征[1-2]。近年來,NAFLD的全球患病率進(jìn)行性升高,截至2023年已達(dá)到38%[3],成為影響全球公共健康的重要疾病之一。雙硫死亡不同于既往所提出的壞死性凋亡、焦亡、鐵死亡和銅死亡等細(xì)胞死亡方式,其發(fā)生與細(xì)胞內(nèi)的煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)、胱氨酸和二硫化物密不可分。多項(xiàng)研究顯示,雙硫死亡導(dǎo)致的肝細(xì)胞骨架坍塌可加速NAFLD的病情發(fā)展。由此提示,雙硫死亡可能與NAFLD的發(fā)生和發(fā)展相關(guān)[4]。因此,本文就雙硫死亡在NAFLD疾病進(jìn)展中的作用機(jī)制進(jìn)行綜述,為NAFLD的防治提供新思路。
1"""" 雙硫死亡
1.1" 雙硫死亡概述""""" 雙硫死亡是一種因NAPDH不足而引起二硫化物應(yīng)激所導(dǎo)致的新型細(xì)胞死亡方式[5]。它不從屬于任何一種已知的細(xì)胞死亡調(diào)節(jié)機(jī)制[6],其引起的細(xì)胞死亡不能被常規(guī)的細(xì)胞死亡抑制劑所抑制。雙硫死亡的發(fā)生與細(xì)胞氧化還原穩(wěn)態(tài)密切相關(guān)。當(dāng)細(xì)胞內(nèi)NADPH的產(chǎn)生不足或過度消耗時(shí),細(xì)胞內(nèi)的氧化還原穩(wěn)態(tài)就會被破壞[7]。這種破壞可導(dǎo)致細(xì)胞內(nèi)胱氨酸過量積累,發(fā)生肌動(dòng)蛋白細(xì)胞骨架二硫鍵應(yīng)激,進(jìn)而出現(xiàn)肌動(dòng)蛋白網(wǎng)絡(luò)坍塌,發(fā)生雙硫死亡[5]。
1.2" 雙硫死亡的作用機(jī)制"" 在細(xì)胞內(nèi),二硫化物的來源主要有兩個(gè)途徑,即半胱氨酸代謝途徑和葡萄糖代謝途徑。其中,半胱氨酸代謝中的脫硫和氧化還原反應(yīng)是形成二硫化物的直接途徑;而葡萄糖代謝則是通過影響NADPH的生成間接影響二硫化物的水平。在葡萄糖代謝中,NADPH可作為一種還原劑,有效降低細(xì)胞內(nèi)二硫化物的積累,但當(dāng)細(xì)胞內(nèi)NADPH被大量消耗時(shí)又會使氧化還原穩(wěn)態(tài)失衡,導(dǎo)致氧化應(yīng)激的發(fā)生[8]。作為對氧化應(yīng)激的響應(yīng),谷胱甘肽通過谷胱甘肽化與氧化還原敏感蛋白中的半胱氨酸殘基形成混合二硫鍵[9]。而溶質(zhì)載體家族7成員11(solut carrier family 7 member 11,SLC7A11)則會攝取胱氨酸[10-11],并消耗大量NADPH將胱氨酸還原為半胱氨酸。當(dāng)這種情況與葡萄糖饑餓同時(shí)發(fā)生時(shí),NADPH將被耗盡,導(dǎo)致胱氨酸在細(xì)胞中大量積累并造成肌動(dòng)蛋白細(xì)胞骨架二硫鍵應(yīng)激,引起肌動(dòng)蛋白細(xì)胞骨架與質(zhì)膜剝離,發(fā)生細(xì)胞雙硫死亡[10]。
基于上述復(fù)雜的代謝和氧化還原調(diào)控過程可以發(fā)現(xiàn),肌動(dòng)蛋白細(xì)胞骨架在雙硫死亡中具有關(guān)鍵作用。肌動(dòng)蛋白細(xì)胞骨架不僅維系著細(xì)胞的形態(tài)和穩(wěn)定性,也是細(xì)胞內(nèi)眾多生物化學(xué)反應(yīng)的場所[12-14]。研究[12]顯示,在組成細(xì)胞骨架的肌動(dòng)蛋白中存在兩個(gè)高度保守的半胱氨酸殘基,其可發(fā)生氧化而形成二硫鍵,進(jìn)而導(dǎo)致細(xì)胞,尤其是紅細(xì)胞中的細(xì)胞骨架僵硬和部分坍塌。同時(shí),肌動(dòng)蛋白細(xì)胞骨架也參與各類代謝進(jìn)程,如參與糖酵解限速酶的構(gòu)成等[15]。肌動(dòng)蛋白細(xì)胞骨架因?yàn)槎蜴I的形成,與質(zhì)膜發(fā)生剝離,可能會改變糖酵解途徑各組分的位置和結(jié)構(gòu),引起細(xì)胞的糖代謝異常。肌動(dòng)蛋白細(xì)胞骨架作為二硫鍵形成的緩沖結(jié)構(gòu),可協(xié)助細(xì)胞通過某些蛋白(如肌動(dòng)蛋白和肌動(dòng)蛋白結(jié)合蛋白)來吸收多余的胱氨酸,直至細(xì)胞骨架達(dá)到結(jié)合極限,甚至細(xì)胞中過量積累胱氨酸[12]??梢?,雙硫死亡的主要生化改變就是肌動(dòng)蛋白細(xì)胞骨架之間形成二硫鍵,進(jìn)而引起其與質(zhì)膜剝離,最終導(dǎo)致細(xì)胞死亡(圖1)。
2"""" 雙硫死亡在NAFLD中的作用機(jī)制
在NAFLD的發(fā)展過程中,雙硫死亡的發(fā)生與胱氨酸應(yīng)激和葡萄糖代謝紊亂密切相關(guān)。研究[16-17]發(fā)現(xiàn),在正常肝臟中,胱氨酸/谷氨酸反轉(zhuǎn)運(yùn)蛋白System Xc-可介導(dǎo)細(xì)胞外胱氨酸的攝取和谷氨酸轉(zhuǎn)運(yùn),并通過該過程影響細(xì)胞內(nèi)NADPH和二硫化物的積累,進(jìn)而影響肌動(dòng)蛋白細(xì)胞骨架的穩(wěn)定性和細(xì)胞的生存狀態(tài)。System Xc-是一種嵌入細(xì)胞磷脂雙分子層中的Na+依賴性氨基酸反轉(zhuǎn)運(yùn)蛋白,由輕鏈亞基SLC7A11和重鏈亞基SLC3A2組成[18]。其中,SLC7A11主要介導(dǎo)System Xc-的蛋白活性,而SLC3A2可將SLC7A11錨定在質(zhì)膜上并維持SLC7A11的穩(wěn)定性[19]。Murray等[20]研究發(fā)現(xiàn),細(xì)胞外的胱氨酸可通過SLC7A11進(jìn)入細(xì)胞,并快速被NADPH還原為半胱氨酸。半胱氨酸是谷胱甘肽合成的限速前體,其合成的谷胱甘肽作為一種重要的抗氧化劑,可以保護(hù)細(xì)胞免受氧化應(yīng)激的損害,對細(xì)胞的生長和新陳代謝至關(guān)重要[21]。肝臟是葡萄糖代謝的一個(gè)重要場所。當(dāng)葡萄糖進(jìn)入肝細(xì)胞后,在葡萄糖磷酸異構(gòu)酶、6-磷酸葡萄糖脫氫酶的作用下,葡萄糖可通過磷酸戊糖途徑將NADP+還原為NADPH[22]。磷酸戊糖途徑是細(xì)胞內(nèi)NADPH的主要來源,可作為遞氫體參與細(xì)胞胱氨酸的還原和脂質(zhì)的從頭合成[23](圖2a)。
然而,在NAFLD患者的肝臟中(圖2b),葡萄糖是肝細(xì)胞內(nèi)NADPH的主要來源。當(dāng)NAFLD患者的肝細(xì)胞發(fā)生胰島素抵抗時(shí),肝細(xì)胞不能正常攝取、利用葡萄糖,使得細(xì)胞內(nèi)NADPH含量降低,而細(xì)胞內(nèi)的胱氨酸被還原為無毒的半胱氨酸時(shí)仍會進(jìn)一步消耗NADPH。一旦細(xì)胞內(nèi)NADPH耗盡,胱氨酸作為一種水溶性較差的氨基酸,其將會在細(xì)胞內(nèi)大量積累。Song等[24]研究發(fā)現(xiàn),胱氨酸作為一種二硫化物,在細(xì)胞中異常積累時(shí),會誘導(dǎo)二硫化物應(yīng)激,發(fā)生雙硫死亡。同時(shí),胱氨酸的累積還會促使肌動(dòng)蛋白細(xì)胞骨架之間形成二硫鍵,而二硫鍵交聯(lián)可引起肌動(dòng)蛋白絲收縮,導(dǎo)致細(xì)胞骨架塌陷,加速細(xì)胞死亡[5]。Luo等[4]通過加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(WGCNA)發(fā)現(xiàn),在NAFLD中特異性表達(dá)的雙硫死亡相關(guān)基因(disufidptosis-related genes,DRG),如DSTN和MYL6,其異常表達(dá)與M1型Kupffer細(xì)胞活化、免疫細(xì)胞浸潤、脂質(zhì)代謝紊亂、炎癥小體激活等有關(guān)。這提示DRG在NAFLD的發(fā)展過程中可能起著關(guān)鍵作用。Yu等[25]通過生物信息學(xué)分析和動(dòng)物實(shí)驗(yàn)鑒定,驗(yàn)證了多個(gè)與NAFLD相關(guān)的DRG (DDO、FRK和TMEM19等),其表達(dá)水平在NAFLD患者中均顯著上調(diào),且與多種免疫細(xì)胞的形成密切相關(guān)。進(jìn)一步提示,雙硫死亡在NAFLD的進(jìn)展中發(fā)揮了重要作用。
3"""" 雙硫死亡在NAFLD發(fā)展中的作用
3.1" 肥胖癥"" 肥胖癥是一種全球流行性代謝疾病,可導(dǎo)致慢性低表現(xiàn)性炎癥和胰島素抵抗的發(fā)生[26]。在肥胖癥患者中,NAFLD的患病率可達(dá)57.5%[27]。研究[28]顯示,肥胖癥患者的肝臟由于脂肪大量沉積,其肝細(xì)胞長期處于能量代謝和氧化還原失衡的狀態(tài)。在這種情況下,肝細(xì)胞更容易受到葡萄糖饑餓和胱氨酸積累的影響,進(jìn)而引發(fā)雙硫死亡。Atorrasagasti等[29]研究發(fā)現(xiàn),雙硫死亡可通過影響肝細(xì)胞的內(nèi)質(zhì)網(wǎng)結(jié)構(gòu),引發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激,間接參與肝臟的脂肪變性。內(nèi)質(zhì)網(wǎng)應(yīng)激可激活未折疊蛋白反應(yīng),從而調(diào)節(jié)脂質(zhì)合成與脂質(zhì)氧化相關(guān)酶的活性和表達(dá),影響細(xì)胞的脂質(zhì)代謝平衡[30-32]。長期的內(nèi)質(zhì)網(wǎng)應(yīng)激可能導(dǎo)致細(xì)胞功能障礙甚至死亡,這會影響脂質(zhì)的儲存和代謝,尤其在肝細(xì)胞中更為明顯[33-34]。由此可見,雙硫死亡加速了肥胖癥向NAFLD的發(fā)展。
3.2" 非酒精性單純性脂肪肝(NAFL)""" 氧化應(yīng)激是NAFL發(fā)病機(jī)制中的重要環(huán)節(jié)[35],主要表現(xiàn)為活性氧(reactive oxygen species,ROS)的產(chǎn)生與抗氧化系統(tǒng)清除能力之間的不平衡。Karkucinska-Wieckowska等[36]研究表明,肝細(xì)胞內(nèi)產(chǎn)生的大量ROS會使細(xì)胞內(nèi)氧化還原失衡,發(fā)生氧化應(yīng)激。Liu等[37]研究顯示,氧化應(yīng)激與雙硫死亡的發(fā)生密切相關(guān)。當(dāng)NAFL發(fā)生雙硫死亡時(shí),胱氨酸進(jìn)入細(xì)胞后不能轉(zhuǎn)化為半胱氨酸,從而阻礙了谷胱甘肽的合成,降低了細(xì)胞內(nèi)ROS的清除率,導(dǎo)致細(xì)胞發(fā)生氧化應(yīng)激,進(jìn)一步加重肝細(xì)胞的死亡[38]。在此過程中,谷胱甘肽發(fā)揮了重要的作用。研究[39]顯示,谷胱甘肽可通過內(nèi)質(zhì)網(wǎng)中的氧硫還原蛋白5抑制蛋白之間的二硫鍵形成。因此,細(xì)胞內(nèi)谷胱甘肽含量的降低會加速雙硫死亡的發(fā)生。同時(shí),在NAFL的進(jìn)展過程中,肝臟會在出現(xiàn)肝微血管系統(tǒng)功能失調(diào)和缺氧現(xiàn)象的同時(shí),伴隨發(fā)生NADPH代謝異常,從而協(xié)同促進(jìn)雙硫死亡的發(fā)生[40]。
3.3" 非酒精性脂肪性肝炎(NASH) 當(dāng)NAFL發(fā)展至NASH,肝細(xì)胞的病理表現(xiàn)多以炎癥和凋亡相關(guān)因子增加為主[41-42]。研究[43]顯示,在雙硫死亡的過程中,細(xì)胞骨架的收縮與細(xì)胞質(zhì)膜的剝離可激活炎癥小體(NLRP3、Pyrin等),加劇肝臟的炎癥反應(yīng)。在NAFL向NASH發(fā)展的過程中,NLRP3發(fā)揮了重要作用[44-45]。NLRP3的激活不僅可引起肌動(dòng)蛋白細(xì)胞骨架功能失調(diào)[46],還會加重免疫反應(yīng),促進(jìn)caspase-1、TNF-α、IL-1β和IL-18的成熟[47-49],導(dǎo)致過度炎癥的發(fā)生。同時(shí),Pyrin的激活過程也依賴于肌動(dòng)蛋白細(xì)胞骨架。Barrow等[50]研究顯示,Pyrin的激活需要肌動(dòng)蛋白和銜接蛋白ASC(凋亡相關(guān)斑點(diǎn)樣蛋白)的相互作用。此外,該相互作用還可促進(jìn)NLRP3小體的組裝與激活。
4"""" 小結(jié)與展望
雙硫死亡作為近年來提出的一種新型細(xì)胞死亡方式,可通過影響糖、脂代謝以及肌動(dòng)蛋白細(xì)胞骨架的穩(wěn)定性加劇肝細(xì)胞的損傷和死亡,促進(jìn)NAFLD的發(fā)展。盡管目前對雙硫死亡在NAFLD中的作用機(jī)制尚需深入研究,但其潛在的應(yīng)用價(jià)值已經(jīng)顯現(xiàn)出來。雙硫死亡在不同NAFLD亞型中的作用和分子機(jī)制存在差異,未來可以針對這些差異,靶向雙硫死亡,為不同亞型的NAFLD患者采取個(gè)性化的干預(yù)和治療。
參考文獻(xiàn):
[1] AMORIM R,SOARES P,CHAVARRIA D,et al. Decreasing the bur-den of non-alcoholic fatty liver disease:From therapeutic targets to drug discovery opportunities[J]. Eur J Med Chem,2024,277:116723. DOI: 10.1016/j.ejmech.2024.116723.
[2] YANG BM,TANG GM,WANG MT,et al. Trimethylamine N-oxide in-duces non-alcoholic fatty liver disease by activating the PERK[J]. Toxicol Lett,2024,400:93-103. DOI: 10.1016/j.toxlet.2024.08.009.
[3] YOUNOSSI ZM,GOLABI P,PAIK JM,et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD)and nonalcoholic ste- atohepatitis (NASH):A systematic review[J]. Hepatology,2023,77 (4):1335-1347. DOI: 10.1097/HEP.0000000000000004.
[4] LUO XH,GUO JJ,DENG HB,et al. Unveiling the role of disulfidptosis- related genes in the pathogenesis of non-alcoholic fatty liver disease [J]. Front Immunol,2024,15:1386905. DOI:10.3389/fimmu.2024. 1386905.
[5] LIU XG,NIE LT,ZHANG YL,et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis[J]. Nat Cell Biol,2023,25 (3):404-414. DOI: 10.1038/s41556-023-01091-2.
[6] ZHENG TJ,LIU QB,XING FY,et al. Disulfidptosis:A new form of programmed cell death[J]. J Exp Clin Cancer Res,2023,42(1):137. DOI: 10.1186/s13046-023-02712-2.
[7] SARMIENTO-SALINAS FL,PEREZ-GONZALEZ A,ACOSTA-CASIQUE A,et al. Reactive oxygen species:Role in carcinogenesis,cancer cell signaling and tumor progression[J]. Life Sci,2021,284:119942. DOI:10.1016/j.lfs.2021.119942.
[8] NJEIM R,ALKHANSA S,F(xiàn)ORNONI A. Unraveling the crosstalk be-tween lipids and NADPH oxidases in diabetic kidney disease[J]. Phar-maceutics,2023,15(5):1360. DOI: 10.3390/pharmaceutics15051360.
[9] MUSAOGULLARI A,CHAI YC. Redox regulation by protein S-gluta- thionylation:From molecular mechanisms to implications in health and disease[J]. Int J Mol Sci,2020,21(21):8113. DOI:10. 3390/ijms21218113.
[10] SHUAI Y,MA ZH,YUAN P. Disulfidptosis:Disulfide stress-induced novel cell death pathway[J]. MedComm (2020),2024,5(7):e579. DOI: 10.1002/mco2.579.
[11] YUE JD,YIN YK,F(xiàn)ENG XJ,et al. Discovery of the inhibitor targeting the SLC7A11/xCT axis through in silico and in vitro experiments[J]. Int J Mol Sci,2024,25(15):8284. DOI: 10.3390/ijms25158284.
[12] MACHESKY LM. Deadly actin collapse by disulfidptosis[J]. Nat Cell Biol,2023,25(3):375-376. DOI: 10.1038/s41556-023-01100-4.
[13] SHUBHRASMITA SAHU S,SARKAR P,CHATTOPADHYAY A. Quan-titation of F-actin in cytoskeletal reorganization:Context,methodol-ogy and implications[J]. Methods,2024,230:44-58. DOI: 10.1016/ j.ymeth.2024.07.009.
[14] YANG GN,KOPECKI Z,COWIN AJ. Role of actin cytoskeleton in the regulation of epithelial cutaneous stem cells[J]. Stem Cells Dev,2016,25(10):749-759. DOI: 10.1089/scd.2016.0051.
[15] DEWANE G,SALVI AM,DEMALI KA. Fueling the cytoskeleton-links between cell metabolism and actin remodeling[J]. J Cell Sci,2021,134(3):jcs248385. DOI: 10.1242/jcs.248385.
[16] JYOTSANA N,TA KT,DELGIORNO KE. The role of cystine/gluta- mate antiporter SLC7A11/xCT in the pathophysiology of cancer[J]. Front Oncol,2022,12:858462. DOI: 10.3389/fonc.2022.858462.
[17] XU ZC,WANG YP,YANG WL,et al. Total extracts from Abel-moschus manihot (L.)alleviate radiation-induced cardiomyocyte ferroptosis via regulating redox imbalances mediated by the NOX4/ xCT/GPX4 axis[J]. J Ethnopharmacol,2024,334:118582. DOI:10.1016/j.jep.2024.118582.
[18] COSTA I,BARBOSA DJ,BENFEITO S,et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases[J]. Pharmacol Ther,2023,244:108373. DOI: 10.1016/j.pharmthera.2023.108373.
[19] KOPPULA P,ZHUANG L,GAN BY. Cystine transporter SLC7A11/ xCT in cancer:Ferroptosis,nutrient dependency,and cancer therapy [J]. Protein Cell,2021,12(8):599-620. DOI:10.1007/s13238-020- 00789-5.
[20] MURRAY TV,DONG X,SAWYER GJ,et al. NADPH oxidase 4 regu-lates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice[J]. Free Radic Biol Med,2015,89:918-930. DOI: 10.1016/j.freeradbiomed.2015.09.015.
[21] COLLET JF,CHO SH,IORGA BI,et al. How the assembly and pro-tection of the bacterial cell envelope depend on cysteine residues [J]. J Biol Chem,2020,295(34):11984-11994. DOI: 10.1074/jbc. REV120.011201.
[22] ADEVA-ANDANY MM,PEREZ-FELPETE N,F(xiàn)ERNANDEZ-FERNANDEZ C,et al. Liver glucose metabolism in humans[J]. Biosci Rep,2016,36(6):e00416. DOI: 10.1042/BSR20160385.
[23] GARCIA-DOMINGUEZ E,CARRETERO A,VINA-ALMUNIA A,et al. Glucose 6-P dehydrogenase-an antioxidant enzyme with regulatory functions in skeletal muscle during exercise[J]. Cells,2022,11(19):3041. DOI: 10.3390/cells11193041.
[24] SONG WX,LI DY,TAO L,et al. Solute carrier transporters:The meta-bolic gatekeepers of immune cells[J]. Acta Pharm Sin B,2020,10 (1):61-78. DOI: 10.1016/j.apsb.2019.12.006.
[25] YU XX,GUO ZH,F(xiàn)ANG ZH,et al. Identification and validation of di-sulfidptosis-associated molecular clusters in non-alcoholic fatty liver disease[J]. Front Genet,2023,14:1251999. DOI:10.3389/fgene. 2023.1251999.
[26] AHMED B,SULTANA R,GREENE MW. Adipose tissue and insulin resistance in obese[J]. Biomed Pharmacother,2021,137:111315. DOI: 10.1016/j.biopha.2021.111315.
[27] AMINI-SALEHI E,LETAFATKAR N,NOROUZI N,et al. Global preva-lence of nonalcoholic fatty liver disease:An updated review meta-analysis comprising a population of 78 million from 38 countries[J]. Arch Med Res,2024,55(6):103043. DOI:10.1016/j.arcmed.2024. 103043.
[28] OH AR,JEONG Y,YU JJ,et al. Hepatocyte Kctd17 inhibition amelio-rates glucose intolerance and hepatic steatosis caused by obesity- induced chrebp stabilization[J]. Gastroenterology,2023,164(3):439-453. DOI: 10.1053/j.gastro.2022.11.019.
[29] ATORRASAGASTI C,ONORATO AM,MAZZOLINI G. The role of SPARC (secreted protein acidic and rich in cysteine)in the patho-genesis of obesity,type 2 diabetes,and non-alcoholic fatty liver disease[J]. J Physiol Biochem,2023,79(4):815-831. DOI: 10.1007/ s13105-022-00913-5.
[30] AJOOLABADY A,KAPLOWITZ N,LEBEAUPIN C,et al. Endoplas-mic reticulum stress in liver diseases[J]. Hepatology,2023,77(2):619-639. DOI: 10.1002/hep.32562.
[31] CELIK C,LEE SYT,YAP WS,et al. Endoplasmic reticulum stress and lipids in health and diseases[J]. Prog Lipid Res,2023,89:101198. DOI: 10.1016/j.plipres.2022.101198.
[32] LIANG YC,KAUSHAL D,WILSON RB. Cellular senescence and ex-tracellular vesicles in the pathogenesis and treatment of obesity-A narrative review[J]. Int J Mol Sci,2024,25(14):7943. DOI: 10.3390/ ijms25147943.
[33] de ALMEIDA CHUFFA LG,SEIVA FRF,SILVEIRA HS,et al. Melato-nin regulates endoplasmic reticulum stress in diverse pathophysi-ological contexts:A comprehensive mechanistic review[J]. J Cell Physiol,2024:e31383. DOI: 10.1002/jcp.31383.
[34] ZHANG J,GUO JF,YANG NN,et al. Endoplasmic reticulum stress- mediated cell death in liver injury[J]. Cell Death Dis,2022,13(12):1051. DOI: 10.1038/s41419-022-05444-x.
[35] SIMOES ICM,AMORIM R,TEIXEIRA J,et al. The alterations of mito-chondrial function during NAFLD progression-an independent effect of mitochondrial ROS production[J]. Int J Mol Sci,2021,22(13):6848. DOI: 10.3390/ijms22136848.
[36] KARKUCINSKA-WIECKOWSKA A,SIMOES ICM,KALINOWSKI P,et al. Mitochondria,oxidative stress and nonalcoholic fatty liver disease:A complex relationship[J]. Eur J Clin Invest,2022,52(3):e13622. DOI: 10.1111/eci.13622.
[37] LIU XG,ZHUANG L,GAN BY. Disulfidptosis:Disulfide stress-induced cell death[J]. Trends Cell Biol,2024,34(4):327-337. DOI: 10.1016/ j.tcb.2023.07.009.
[38] JOLY JH,DELFARAH A,PHUNG PS,et al. A synthetic lethal drug combination mimics glucose deprivation-induced cancer cell death in the presence of glucose[J]. J Biol Chem,2020,295(5):1350-1365. DOI: 10.1074/jbc.RA119.011471.
[39] HORNA-TERRON E,PRADILLA-DIESTE A,SANCHEZ-DE-DIEGO C,et al. TXNDC5,a newly discovered disulfide isomerase with a key role in cell physiology and pathology[J]. Int J Mol Sci,2014,15(12):23501-23518. DOI: 10.3390/ijms151223501.
[40] NATH B,SZABO G. Hypoxia and hypoxia inducible factors:Diverse roles in liver diseases[J]. Hepatology,2012,55(2):622-633. DOI:10.1002/hep.25497.
[41] GONG H,HE QD,ZHU LL,et al. Associations between systemic in-flammation indicators and nonalcoholic fatty liver disease:Evidence from a prospective study[J]. Front Immunol,2024,15:1389967. DOI:10.3389/fimmu.2024.1389967.
[42] LIU Q,BENGMARK S,QU S. The role of hepatic fat accumulation in pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Lip-ids Health Dis,2010,9:42. DOI: 10.1186/1476-511X-9-42.
[43] BURGER D,F(xiàn)ICKENTSCHER C,de MOERLOOSE P,et al. F-actin dampens NLRP3 inflammasome activity via Flightless-I and LRRFIP2 [J]. Sci Rep,2016,6:29834. DOI: 10.1038/srep29834.
[44] de CARVALHO RIBEIRO M,SZABO G. Role of the inflammasome in liver disease[J]. Annu Rev Pathol,2022,17:345-365. DOI: 10.1146/ annurev-pathmechdis-032521-102529.
[45] YU LL,HONG W,LU S,et al. The NLRP3 inflammasome in non-alco-holic fatty liver disease and steatohepatitis:Therapeutic targets and treatment[J]. Front Pharmacol,2022,13:780496. DOI: 10.3389/ fphar.2022.780496.
[46] LEE PP,LOBATO-MARQUEZ D,PRAMANIK N,et al. Wiskott-Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells[J]. Nat Commun,2017,8(1):1576. DOI:10. 1038/s41467-017-01676-0.
[47] ELMORSY EA,SABER S,HAMAD RS,et al. Modulating the HSP90 control over NFKB/NLRP3/caspase-1 axis is a new therapeutic tar-get in the management of liver fibrosis:Insights into the role of TAS- 116 (pimitespib)[J]. Life Sci,2024,354:122966. DOI:10.1016/j.lfs. 2024.122966.
[48] RAMOS-TOVAR E,MURIEL P. NLRP3 inflammasome in hepatic dis-eases:A pharmacological target[J]. Biochem Pharmacol,2023,217:115861. DOI: 10.1016/j.bcp.2023.115861.
[49] SATHEESAN A,KUMAR J,LEELA KV,et al. Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)inflammasome pathway in diabetes:Mechanistic insights and therapeutic implications[J]. Inflammopharmacology,2024,32 (5):2753-2779. DOI: 10.1007/s10787-024-01556-2.
[50] BARROW ER,VALIONYTE E,BAXTER CR,et al. Discovery of SQSTM1/p62-dependent P-bodies that regulate the NLRP3 inflam- masome[J]. Cell Rep,2024,43(3):113935. DOI:10.1016/j.celrep. 2024.113935.