范卓如
在新的世紀(jì)里,知識(shí)的發(fā)明創(chuàng)造對(duì)社會(huì)發(fā)展越來越重要,其勞動(dòng)者則是掌握知識(shí)具有創(chuàng)造性的人才。中共中央國務(wù)院在《深化教育改革,全面推進(jìn)素質(zhì)教育》中指出實(shí)施素質(zhì)教育,就是全面貫徹黨的教育方針,重點(diǎn)培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力。應(yīng)試教育向素質(zhì)教育的轉(zhuǎn)軌,是當(dāng)前教育教改的方向,也是每個(gè)教師義不容辭的責(zé)任。數(shù)學(xué)教師應(yīng)在培養(yǎng)學(xué)生的素質(zhì)上狠下功夫。而數(shù)學(xué)素質(zhì)一般認(rèn)為包括:數(shù)學(xué)意識(shí)、問題解決、邏輯推理和信息交流四個(gè)方面。數(shù)學(xué)建模既有“數(shù)學(xué)意識(shí)”的因素,也是“問題解決”的一部份。因此在中學(xué)實(shí)施“數(shù)學(xué)建模”的教學(xué)是提高學(xué)生應(yīng)用意識(shí)和數(shù)學(xué)素質(zhì)的重要途徑之一。也是培養(yǎng)學(xué)生的創(chuàng)新能力的重要舉措。
一、中學(xué)數(shù)學(xué)建模教與學(xué)的現(xiàn)狀
數(shù)學(xué)應(yīng)用問題在未列入高考問題之前,在中學(xué)數(shù)學(xué)教學(xué)中得不到應(yīng)有的重視。相當(dāng)一部份教師認(rèn)為數(shù)學(xué)主要是培養(yǎng)學(xué)生運(yùn)算能力和邏輯推理能力。視應(yīng)用問題為“不好的數(shù)學(xué)”。至于如何從數(shù)學(xué)的角度出發(fā),分析和處理學(xué)生周圍的生活及生產(chǎn)實(shí)際問題更是無意顧及。學(xué)生應(yīng)用意識(shí)淡薄。很多走向社會(huì)的學(xué)生認(rèn)為他在中學(xué)所學(xué)的數(shù)學(xué),在他以后的工作生活中“沒有用處”。由于學(xué)生應(yīng)用意識(shí)不強(qiáng),影響了學(xué)生用發(fā)展的眼光看問題,忽略了與實(shí)際的聯(lián)系。為應(yīng)付高考,急功近利。短期訓(xùn)練是大部份高三教師的“法寶”。因高考把應(yīng)用題作為必考題。而應(yīng)用問題取材困難,現(xiàn)成的好的應(yīng)用問題并不多。高三老師就高三階段把各地的模擬題用來對(duì)學(xué)生進(jìn)行強(qiáng)化訓(xùn)練。因?qū)W生平時(shí)很少涉及實(shí)際建模問題的解決。這種做法只能是事倍功半。學(xué)生解決應(yīng)用問題的能力沒有很大的提高。有的學(xué)校更是放棄應(yīng)用問題的教學(xué),認(rèn)為教不教學(xué)生都不會(huì)。
從近幾年高考應(yīng)用題考后的質(zhì)量分析不難發(fā)現(xiàn):通過以上作法,難以從根本上提高學(xué)生的建模能力。某市高三統(tǒng)考出了這樣一道應(yīng)用題:買一套新住房需要人民幣15萬元,若一次付清優(yōu)惠25%,若連續(xù)五年分期付款付清,則需每年的相同月份內(nèi)交付3萬元。若銀行一年期存款率為8%,按本利累進(jìn)計(jì)算(即每年的存款與利息之和轉(zhuǎn)為下年存款)。問兩種付款方式哪種對(duì)購房者有利?試說明理由。很多學(xué)生如下作答,按第一種方式付款共付人民幣15×(1—25%)=11.25(萬元),按第二種方式付款共付人民幣15萬元。因而認(rèn)為第一種付款方式對(duì)購房者有利。真是太令人失望了。在眾多學(xué)生的眼中今天的五萬元與明年今天的五萬元沒有什么區(qū)別?所以在中學(xué)加強(qiáng)學(xué)生建模教學(xué)已刻不容緩。
二、數(shù)學(xué)建模與數(shù)學(xué)建模意識(shí)
著名數(shù)學(xué)家懷特海曾說:“數(shù)學(xué)就是對(duì)于模式的研究”。所謂數(shù)學(xué)模型,是指對(duì)于現(xiàn)實(shí)世界的某一特定研究對(duì)象,為了某個(gè)特定的目的,在做了一些必要的簡(jiǎn)化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,并通過數(shù)學(xué)語言表述出來的一個(gè)數(shù)學(xué)結(jié)構(gòu),數(shù)學(xué)中的各種基本概念,都以各自相應(yīng)的現(xiàn)實(shí)原型作為背景而抽象出來的數(shù)學(xué)概念。各種數(shù)學(xué)公式、方程式、定理、理論體系等等,都是一些具體的數(shù)學(xué)模型。舉個(gè)簡(jiǎn)單的例子,二次函數(shù)就是一個(gè)數(shù)學(xué)模型,很多數(shù)學(xué)問題甚至實(shí)際問題都可以轉(zhuǎn)化為二次函數(shù)來解決。而通過對(duì)問題數(shù)學(xué)化,模型構(gòu)建,求解檢驗(yàn)使問題獲得解決的方法稱之為數(shù)學(xué)模型方法。我們的數(shù)學(xué)教學(xué)說到底實(shí)際上就是教給學(xué)生前人給我們構(gòu)建的一個(gè)個(gè)數(shù)學(xué)模型和怎樣構(gòu)建模型的思想方法,以使學(xué)生能運(yùn)用數(shù)學(xué)模型解決數(shù)學(xué)問題和實(shí)際問題。由此,我們可以看到,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問題的能力,關(guān)鍵是把實(shí)際問題抽象為數(shù)學(xué)問題。必須首先通過觀察分析、提煉出實(shí)際問題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識(shí)系統(tǒng)去處理,這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識(shí)貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點(diǎn)去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問題中抽象出我們熟悉的數(shù)學(xué)模型,進(jìn)而達(dá)到用數(shù)學(xué)模型來解決實(shí)際問題,使數(shù)學(xué)建模意識(shí)成為學(xué)生思考問題的方法和習(xí)慣。
三、構(gòu)建數(shù)學(xué)建模意識(shí)的基本途徑。
1、為了培養(yǎng)學(xué)生的建模意識(shí),中學(xué)數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識(shí)。這不僅意味著我們?cè)诮虒W(xué)內(nèi)容和要求上的變化,更意味著教育思想和教學(xué)觀念的更新。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動(dòng)態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)生活。北京大學(xué)附中張思明老師對(duì)此提供了非常典型的事例:他在大街上看到一則廣告:“本店承接A1型號(hào)影印?!笔裁词茿1型號(hào)?在弄清了各種型號(hào)的比例關(guān)系后,他便把這一材料引入到初中“相似形”部分的教學(xué)中。這是一般人所忽略的事,卻是數(shù)學(xué)教師運(yùn)用數(shù)學(xué)建模進(jìn)行教學(xué)的良好機(jī)會(huì)。
2、數(shù)學(xué)建模教學(xué)還應(yīng)與現(xiàn)行教材結(jié)合起來研究。教師應(yīng)研究在各個(gè)教學(xué)章節(jié)中可引入哪些模型問題,如講立體幾何時(shí)可引入正方體模型或長(zhǎng)方體模型把相關(guān)問題放入到這些模型中來解決;又如在解幾中講了兩點(diǎn)間的距離公式后,可引入兩點(diǎn)間的距離模型解決一些具體問題;而儲(chǔ)蓄問題、信用貸款問題則可結(jié)合在數(shù)列教學(xué)中。要經(jīng)常滲透建模意識(shí),這樣通過教師的潛移默化,學(xué)生可以從各類大量的建模問題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行建模的能力。
3、注意與其它相關(guān)學(xué)科的關(guān)系。由于數(shù)學(xué)是學(xué)生學(xué)習(xí)其它自然科學(xué)以至社會(huì)科學(xué)的工具而且其它學(xué)科與數(shù)學(xué)的聯(lián)系是相當(dāng)密切的。因此我們?cè)诮虒W(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對(duì)其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識(shí)的一個(gè)不可忽視的途徑。例如教了正弦型函數(shù)后,可引導(dǎo)學(xué)生用模型函數(shù)y=Asin(ωx+Φ),寫出物理中振動(dòng)圖象或交流圖象的數(shù)學(xué)表達(dá)式?!梢姡@樣的模型意識(shí)不僅僅是抽象的數(shù)學(xué)知識(shí),而且將對(duì)他們學(xué)習(xí)其它學(xué)科的知識(shí)以及將來用數(shù)學(xué)建模知識(shí)探討各種邊緣學(xué)科產(chǎn)生深遠(yuǎn)的影響。
4、在教學(xué)中還要結(jié)合專題討論與建模法研究。我們可以選擇適當(dāng)?shù)慕n},如“代數(shù)法建?!?、“圖解法建模”、“直(曲)線擬合法建?!?,通過討論、分析和研究,熟悉并理解數(shù)學(xué)建模的一些重要思想,掌握建模的基本方法。甚至可以引導(dǎo)學(xué)生通過對(duì)日常生活的觀察,自己選擇實(shí)際問題進(jìn)行建模練習(xí),從而讓學(xué)生嘗到數(shù)學(xué)建模成功的“甜”和難于解決的“苦”借亦拓寬視野、增長(zhǎng)知識(shí)、積累經(jīng)驗(yàn)。這亦符合玻利亞的“主動(dòng)學(xué)習(xí)原則”,也正所謂“學(xué)問之道,問而得,不如求而得之深固也”。
四、把構(gòu)建數(shù)學(xué)建模意識(shí)與培養(yǎng)學(xué)生創(chuàng)造性思維過程統(tǒng)一起來。
在諸多的思維活動(dòng)中,創(chuàng)新思維是最高層次的思維活動(dòng),是開拓性、創(chuàng)造性人才所必須具備的能力。我認(rèn)為培養(yǎng)學(xué)生創(chuàng)造性思維的過程有三點(diǎn)基本要求。第一、對(duì)周圍的事物要有積極的態(tài)度;第二、要敢于提出問題;第三、善于聯(lián)想,善于理論聯(lián)系實(shí)際。因此在數(shù)學(xué)教學(xué)中構(gòu)建學(xué)生的建模意識(shí)實(shí)質(zhì)上是培養(yǎng)學(xué)生的創(chuàng)造性思維能力,因?yàn)榻;顒?dòng)本身就是一項(xiàng)創(chuàng)造性的思維活動(dòng)。它既具有一定的理論性又具有較大的實(shí)踐性;既要求思維的數(shù)量,還要求思維的深刻性和靈活性,而且在建?;顒?dòng)過程中,能培養(yǎng)學(xué)生獨(dú)立,自覺地運(yùn)用所給問題的條件,尋求解決問題的最佳方法和途徑,可以培養(yǎng)學(xué)生的想象能力,直覺思維、猜測(cè)、轉(zhuǎn)換、構(gòu)造等能力。而這些數(shù)學(xué)能力正是創(chuàng)造性思維所具有的最基本的特征。
1、發(fā)揮學(xué)生的想象能力,培養(yǎng)學(xué)生的直覺思維眾所周知,數(shù)學(xué)史上不少的數(shù)學(xué)發(fā)現(xiàn)來源于直覺思維,如笛卡爾坐標(biāo)系、費(fèi)爾馬大定理、歌德巴赫猜想、歐拉定理等,應(yīng)該說它們不是任何邏輯思維的產(chǎn)物,而是數(shù)學(xué)家通過觀察、比較、領(lǐng)悟、突發(fā)靈感發(fā)現(xiàn)的。通過數(shù)學(xué)建模教學(xué),使學(xué)生有獨(dú)到的見解和與眾不同的思考方法,如善于發(fā)現(xiàn)問題,溝通各類知識(shí)之間的內(nèi)在聯(lián)系等是培養(yǎng)學(xué)生創(chuàng)新思維的核心。如果沒有一定的建模訓(xùn)練,是很難“創(chuàng)造”出如此簡(jiǎn)潔、優(yōu)美的證明的。正如E?L?泰勒指出的“具有豐富知識(shí)和經(jīng)驗(yàn)的人,比只有一種知識(shí)和經(jīng)驗(yàn)的人更容易產(chǎn)生新的聯(lián)想和獨(dú)創(chuàng)的見解。”
2、構(gòu)建建模意識(shí),培養(yǎng)學(xué)生的轉(zhuǎn)換能力恩格斯曾說過:“由一種形式轉(zhuǎn)化為另一種形式不是無聊的游戲而是數(shù)學(xué)的杠桿,如果沒有它,就不能走很遠(yuǎn)?!庇捎跀?shù)學(xué)建模就是把實(shí)際問題轉(zhuǎn)換成數(shù)學(xué)問題,因此如果我們?cè)跀?shù)學(xué)教學(xué)中注重轉(zhuǎn)化,用好這根有力的杠桿,對(duì)培養(yǎng)學(xué)生思維品質(zhì)的靈活性、創(chuàng)造性及開發(fā)智力、培養(yǎng)能力、提高解題速度是十分有益的。
3、以“構(gòu)造”為載體,培養(yǎng)學(xué)生的創(chuàng)新能力“一個(gè)好的數(shù)學(xué)家與一個(gè)蹩腳的數(shù)學(xué)家之間的差別,就在于前者有許多具體的例子,而后者則只有抽象的理論。”我們前面講到,“建模”就是構(gòu)造模型,但模型的構(gòu)造并不是一件容易的事,又需要有足夠強(qiáng)的構(gòu)造能力,而學(xué)生構(gòu)造能力的提高則是學(xué)生創(chuàng)造性思維和創(chuàng)造能力的基礎(chǔ):創(chuàng)造性地使用已知條件,創(chuàng)造性地應(yīng)用數(shù)學(xué)知識(shí)。
綜上所述,在數(shù)學(xué)教學(xué)中構(gòu)建學(xué)生的數(shù)學(xué)建模意識(shí)與素質(zhì)教育所要求的培養(yǎng)學(xué)生的創(chuàng)造性思維能力是相輔相成,密不可分的。要真正培養(yǎng)學(xué)生的創(chuàng)新能力,光憑傳授知識(shí)是遠(yuǎn)遠(yuǎn)不夠的,重要的是在教學(xué)中必須堅(jiān)持以學(xué)生為主體,不能脫離學(xué)生搞一些不切實(shí)際的建模教學(xué),我們的一切教學(xué)活動(dòng)必須以調(diào)動(dòng)學(xué)生的主觀能動(dòng)性,培養(yǎng)學(xué)生的創(chuàng)新思維為出發(fā)點(diǎn),引導(dǎo)學(xué)生自主活動(dòng),自覺的在學(xué)習(xí)過程中構(gòu)建數(shù)學(xué)建模意識(shí),這些要求不僅符合數(shù)學(xué)本身發(fā)展的需要,也是社會(huì)發(fā)展的需要。因?yàn)槲覀兊臄?shù)學(xué)教學(xué)不僅要使學(xué)生獲得新的知識(shí)而且要提高學(xué)生的思維能力,要培養(yǎng)學(xué)生自覺地運(yùn)用數(shù)學(xué)知識(shí)去考慮和處理日常生活、生產(chǎn)中所遇到的問題,從而形成良好的思維品質(zhì)只有這樣才能使學(xué)生分析和解決問題的能力得到長(zhǎng)足的進(jìn)步,也只有這樣才能真正提高學(xué)生的創(chuàng)新能力,使學(xué)生學(xué)到有用的數(shù)學(xué)。
參考文獻(xiàn):
1、沈文選編著《數(shù)學(xué)建?!泛蠋煷蟪霭嫔?,1999年7月第1版。
2、中國教育學(xué)會(huì)中學(xué)數(shù)學(xué)教學(xué)專業(yè)委員會(huì)編《面向21世紀(jì)的數(shù)學(xué)教學(xué)》浙江教育出版社1997年5月第1版。
3、胡炯濤、張凡編著《中學(xué)數(shù)學(xué)教學(xué)縱橫談》山東教育出版社,1997年12月第1版。
4、方建成。對(duì)“數(shù)學(xué)建?!钡脑偎伎肌?shù)學(xué)通報(bào),2001,1