李東紅,黃慶彩,楊亦春
(1.太原科技大學電子信息工程學院,太原030024;2.中國科學院聲學研究所,北京100190)
直升機的噪聲問題嚴重制約了直升機在實際中的應用。探索降低直升機噪聲的方法是直升機研究和發(fā)展的重要課題之一。Farassat給出了亞音速下旋翼噪聲的計算公式[1-2],徐國華利用Farassat提出的方法計算了直升機的噪聲[3]。Farassat還分析了槳尖后掠對噪聲的影響,發(fā)現(xiàn)后掠可以降低槳葉產(chǎn)生的噪聲[4]。王立群、宋文萍等人利用Kirchhoff方法分析了槳尖后掠對高速脈沖噪聲(HSI)的影響[5-6],結果表明槳尖后掠可以降低噪聲峰值。孫曉峰等介紹了一種針對后掠葉柵噪聲的遠場分析方法[7]。P.A.Shahady分析并試驗驗證了槳葉間距非均勻對噪聲的影響,發(fā)現(xiàn)非均勻槳可以減低噪聲線譜的幅值[8]。Brentner、蔡偉等人分析了槳葉間距非均勻對旋翼噪聲的影響[9-10]。Bryan Edward等將非均勻槳作為旋翼噪聲控制的重要手段之一[11]。W.Dobrzynski研究了將槳葉間距非均勻用于螺旋槳時的噪聲變化并開展了相關的試驗[12]。
采用后掠槳可以降低旋翼的噪聲,而非均勻槳可以改變噪聲的頻譜特征,因此本文主要分析二者結合后對厚度噪聲的影響,包括對比厚度噪聲的聲壓級和指向性兩方面的變化以及不同調制模式及后掠角度對噪聲的影響,從而為旋翼噪聲的分析和控制提供有益的借鑒和指導。
旋翼噪聲通??煞譃楹穸仍肼?、載荷噪聲和四極子噪聲。厚度噪聲是指直升機旋翼在運動過程中由于排開空氣引起壓力擾動而產(chǎn)生的噪聲,主要與槳葉的幾何形狀和飛行狀態(tài)密切相關。厚度噪聲屬于單極子噪聲,其傳播方向主要在槳盤平面內。Farassat對 FW-H方程進行了求解,得到了Formulation 1A 解[1-2]。根據(jù) Formulation1A 公式,在亞音速條件下若忽略四極子噪聲,旋翼噪聲則表示為厚度噪聲和載荷噪聲之和,其中厚度噪聲的預估計算公式如下[1-2]:
相關的理論分析及具體計算過程可參見Brentner等人的研究結果[13]。在前飛條件下,厚度噪聲是槳盤平面的主要噪聲成分,其數(shù)值遠大于載荷噪聲的計算結果[13],因此本文主要針對厚度噪聲來展開研究。在計算前飛條件下的槳葉噪聲時,通常分析隨直升機一起移動的觀測點的噪聲。若設直升機的速度為V(t),則任意t時刻移動坐標系的原點在大地坐標系的對應向量X0(t)表示為[2]:
若計算移動坐標系內點X的聲壓則等同于計算大地坐標系內點X+X0(t)的聲壓,即:
此外,關于噪聲計算時的延時方程的求解方法以及如何分析槳葉剛性振動等參數(shù)的影響可參見相關的文獻[13]。為了說明噪聲計算方法的有效性,本文計算了文獻14中的算例。其中觀測點在槳盤平面內距離槳轂中心約4 m處的聲壓,具體位置為(3.27,-2.16,-0.17),如圖1 所示。其中槳葉的半徑為 1.829 m,弦長為 0.133 4 m,翼型為 NACA0012,共2片槳葉。旋翼轉速為1 300 rpm,前飛速度為 41.4 m/s.聲速 c0為 350.1 m/s,槳盤傾斜角 αt為 -8.76°[14-15],計算結果如圖 2 所示。
圖1 厚度噪聲觀測點位置示意圖Fig.1 Schematic of observer positions of thickness noise
圖2 本文計算結果與試驗數(shù)據(jù)的對比Fig.2 Comparison of numerical results and the experimental results
從圖2中可見,本文所計算的厚度噪聲基本上反映了旋翼在槳盤平面的噪聲變化規(guī)律。
槳尖的改型是提高旋翼性能的一個重要途徑。后掠槳尖除了可提升懸停效率外,在削弱激波方面也有明顯的作用[16]。后掠槳尖帶來氣動性能改善的同時,也會相應降低旋翼產(chǎn)生的噪聲。本文所分析的后掠槳尖的結構如圖3所示。
圖3 后掠槳葉結構示意圖Fig.3 Schematic of configuration of the blade with swept tip
圖3中O為轉軸中心,旋轉角速度記為ω,無后掠時的槳尖長度 Ltip=0.05*R.其中xoy所在平面對應槳葉的旋轉平面,槳尖后掠的起始位置記為R0,槳尖處無后掠時某一點的坐標為(x0,y0,z0),則槳尖后掠后該點的坐標(xs,ys,zs)應滿足下式
為了問題的簡化,僅分析1片槳葉。觀測點位于槳盤平面內距離槳轂中心3 m處。后掠角δ的變化范圍為0~80°,其中后掠角為0°的情況相當于無后掠。不同后掠角的厚度噪聲計算結果如圖4所示,相應的轉速為1 296 rpm,槳葉的弦長為0.133 4 m,翼型為n12,槳葉半徑R為1.829 m.
從圖4中各條曲線的對比可見,采用后掠槳尖可以明顯降低厚度噪聲,而且隨著后掠角的增大,負向脈沖峰值減小。厚度噪聲聲壓級隨后掠角的變化如圖5所示。
從圖5中可見,隨著后掠角的增大,使槳葉產(chǎn)生的厚度噪聲明顯降低。槳尖后掠80°時的厚度噪聲聲壓值比無后掠時的聲壓值減小約3 dB.
圖4 懸停狀態(tài)下不同后掠角的厚度噪聲對比Fig.4 Comparision of thickness noise of hovering rotor with various swept angles
圖5 聲壓有效值隨后掠角的變化曲線Fig.5 Overall sound pressure of thickness noise via swept angle
非均勻槳是指槳葉間距不均勻,假設均勻間距情況下某一個槳葉的相角為θi,經(jīng)過正弦調制后的槳葉相角為 θ'i,則:
其中i=1,2,…N;N為槳葉的總數(shù)。調制參數(shù)b表示槳葉間夾角變化量的最大值,m表示調制的循環(huán)次數(shù)。θi為槳葉間距均勻條件下第i片槳葉相對于槳葉起始位置θ0=0之間的夾角。
非均勻槳可以改變噪聲的譜線特征,主要是降低槳葉通過頻率的譜線峰值,而槳尖后掠可降低噪聲。如果將二者結合,則可以發(fā)揮其各自的優(yōu)點,即在獲得一定降噪效果的同時減弱噪聲的特征。因此本文對槳葉周向間距非均勻槳且槳尖后掠的5槳葉旋翼厚度噪聲進行了數(shù)值計算,相關參數(shù)同前文所述,懸停狀態(tài)下槳盤平面內距離槳轂中心3 m處的計算結果如圖6所示。
圖6 非均勻+后掠槳厚度聲壓有效值隨后掠角的變化曲線Fig.6 Overall sound pressure of thickness noise for rotor with uneven blade spacing and swept tip via swept tip angle
通過比較圖6中兩種調制方式在相同條件下的聲壓有效值,可見隨著后掠角度的增大,厚度噪聲聲壓的有效值都隨之降低。結合槳葉間距調制和槳尖后掠的方式比相同條件下只采用后掠的方式進一步降低厚度噪聲。對比均勻槳和采用正弦調制(b=0.15)非均勻槳的噪聲頻譜可見,將槳葉間距非均勻調制與槳尖后掠二者結合可以使厚度噪聲主要線譜的幅值明顯降低,但是槳葉通過頻率及其諧頻外的其它頻率上的線譜幅值有可能增大。
圖7 正弦調制參數(shù)b=0.15且后掠角δ=40°時非均勻槳與均勻槳的頻譜對比Fig.7 Comparison of spectra of thickness noise between normal rotor and rotor with uneven blade spacing(b=0.15,δ =40°)
圖8 槳盤平面內厚度噪聲指向性Fig.8 Directivity pattern of thickness noise in rotor disc plane
本文計算了前飛速度為60 m/s時位于槳盤平面內距離槳轂中心3 m處的均勻槳和槳尖后掠40°的非均勻槳(正弦調制參數(shù)b=0.15)厚度噪聲的指向性,如圖8所示。從圖8可知,由于前飛速度的影響,槳盤平面內厚度噪聲的指向性圖具有一定的特點,即出現(xiàn)了噪聲聲壓級的峰值和谷點。此外,槳葉間距均勻槳和非均勻槳的厚度噪聲指向性具有明顯的區(qū)別。由于槳葉間距的調制作用,槳盤平面內的厚度噪聲指向性相比于均勻槳的情況發(fā)生了一定的改變。槳葉間距調制后,可以降低某一方向上的噪聲聲壓級(圖8中θ=30°方向),但是會導致另一方向上噪聲的增強(圖8中θ=310°方向)。如果在調制槳葉間距的同時,考慮槳葉槳尖的后掠,則可以使旋翼的噪聲相比于無后掠的情況降低,且指向性曲線的變化趨勢同非均勻正弦調制槳大致相同。
無后掠時,假設槳尖處的某一點為i,其距離轉軸的中心為R0+Li,顯然,由于旋轉,該點相應的線速度為ω(R0+Li)。在槳尖后掠角為θ時,同一點的線速度變?yōu)棣豏s,如圖3所示。由于R0+Li>Rs,因此槳尖后掠的線速度小于無后掠的情況,而從厚度噪聲的計算結果來看,槳尖處的噪聲與速度密切相關,槳尖處的速度越大,產(chǎn)生的噪聲也越大。因此通過槳尖后掠可以降低槳尖處的速度,進而降低其厚度噪聲。
前飛時,對于前行槳葉由于其速度等于線速度與前飛速度之和,因此其附近的噪聲得到了明顯的增強。對于后行槳葉,其速度等于線速度與前飛速度的差,故其附近的噪聲相對減弱。前行和后行槳葉的速度差異造成了聲場的分布差異。
槳葉間距的非均勻主要是改變了厚度噪聲的頻譜特征。引起的主要變化是使噪聲的頻譜從均勻槳情況下的一個槳葉通過頻率和其諧頻變?yōu)槎鄠€槳葉通過頻率。將非均勻槳和后掠槳尖二者相結合,可在降噪的同時使頻譜特征也得到改變。
非均勻槳可以降低旋翼厚度噪聲的頻譜特征,而采用后掠槳尖則可以降低旋翼噪聲,將二者結合可在獲得降噪效果的同時減弱噪聲的頻譜特征,這對于提高直升機的反探測能力具有十分重要的意義。使用該方法時必須考慮到槳葉間距調制對流場的影響,如對載荷平衡的影響,因此可酌情選擇調制系數(shù)和后掠角。
[1]FARASSAT F.Theory of noise generation from moving bodies with an application to helicopter rotors[R].NASA Technical Report,TR R-451,1975.
[2]FARASSAT F.Derivation of Formulations 1 and 1A of Farassat[R].NASA Technical Memorandum,TM-2007-214853,2007.
[3]徐國華,高正.直升機旋翼旋轉噪聲的估算[J].南京航空學院學報.1991,23(2):20-26.
[4]FARASSAT F.Bounds on thickness and loading noise of rotating blades and the favorable effect of blade sweep on noise reduction[R].NASA Technical Report,1978.
[5]王立群,宋文萍.旋翼槳尖形狀對噪聲影響量級的研究[J].航空學報.2000,21(1):48-51.
[6]宋文萍,韓忠華,王立群等.旋翼槳尖幾何形狀對旋翼氣動噪聲影響的定量計算分析[J].計算物理.2001,18(6):569-572.
[7]孫曉峰,周盛.氣動聲學[M].北京:國防工業(yè)出版社,1994.
[8]SHAHADY P A,LYON C A,SCHAUER J J,et al.The Effect of Modulated Blade Spacing on Static Rotor Acoustics and Performance[J].AIAA,1973,44852.
[9]BRENTNER K S,EDWARDS B D,RILEY R,et al.Predicted noise for a main rotor with modulated blade spacing[J].Journal of the American Helicopter Society,2005,50(1):18-25.
[10]蔡偉,王陽,招啟軍.應用非均勻槳葉設計方法的旋翼降噪技術研究[J].直升機技術,2008,3:86-91.
[11]EDWARDS B,COX C.Revolutionary concepts for helicopter noise reduction-S.I.L.E.N.T program[R].NASA Contractor Report,CR-2002-211650,2002.
[12]DOBRZYNSKI W.Propeller noise reduction by means of unsymmetrical blade-spacing[J].Journal of Sound and Vibration,1993,163(1):123-136.
[13]BRENTNER K S.Prediction of Helicopter Rotor Discrete Frequency Noise:A Computer Program Incorporating Realistic Blade Motions and Advanced Acoustic Formulation[R].NASA Technical Memorandum,87721,1986.
[14]CONNER D A,HOAD D R.Reduction of high-speed impulsive noise by blade planform modification of a model helicopter rotor[R].NASA Technical Memorandum,84553,1982.
[15]BRENTNER K S.Prediction of helicopter rotor discrete frequency noise for three scale models[J].Journal of Aircraft,1987,25(5):420-427.
[16]徐廣,招啟軍,王博,等.先進直升機旋翼懸停狀態(tài)氣動性能計算[J].航空學報,2010,31(9):1723-1732.