• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一類分?jǐn)?shù)階時(shí)滯微分系統(tǒng)的兩度量穩(wěn)定性

      2013-07-02 01:17:01王培光周彬彬
      關(guān)鍵詞:河北大學(xué)時(shí)滯微分

      王培光,周彬彬

      (1.河北大學(xué)電子信息工程學(xué)院,河北保定 071002;2.河北大學(xué)數(shù)學(xué)與計(jì)算機(jī)學(xué)院,河北保定 071002)

      一類分?jǐn)?shù)階時(shí)滯微分系統(tǒng)的兩度量穩(wěn)定性

      王培光1,周彬彬2

      (1.河北大學(xué)電子信息工程學(xué)院,河北保定 071002;2.河北大學(xué)數(shù)學(xué)與計(jì)算機(jī)學(xué)院,河北保定 071002)

      討論了一類分?jǐn)?shù)階時(shí)滯微分系統(tǒng).首先,引入錐的概念,給出了錐值分?jǐn)?shù)階時(shí)滯微分系統(tǒng)的Lyapunov函數(shù).其次,發(fā)展了比較定理,得到了關(guān)于分?jǐn)?shù)階時(shí)滯微分系統(tǒng)與微分系統(tǒng)的新的比較定理.最后,通過(guò)新的比較定理,給出分?jǐn)?shù)階時(shí)滯微分系統(tǒng)的兩度量穩(wěn)定性的判斷準(zhǔn)則.

      分?jǐn)?shù)階微分系統(tǒng);時(shí)滯;兩度量穩(wěn)定性

      MSC2010:34D20

      近幾十年來(lái),分?jǐn)?shù)階微積分廣泛應(yīng)用于控制理論、流體力學(xué)、混沌和生物工程等領(lǐng)域,成為不可缺少的數(shù)學(xué)工具.因此,發(fā)展分?jǐn)?shù)階微分系統(tǒng)具有重大的意義.然而,在實(shí)際建立微分系統(tǒng)的過(guò)程中,不可避免地要出現(xiàn)某些無(wú)法估計(jì)的微小擾動(dòng),這些干擾使分?jǐn)?shù)階微分系統(tǒng)的解發(fā)生本質(zhì)性的變化.因此,穩(wěn)定性理論的研究就有其重要的理論和實(shí)用價(jià)值[1-5].

      對(duì)于微分系統(tǒng)的穩(wěn)定性問(wèn)題的研究,一般都是應(yīng)用Lyapunov方法通過(guò)比較定理進(jìn)行討論,因此構(gòu)造恰當(dāng)?shù)腖yapunov函數(shù)成為討論問(wèn)題的關(guān)鍵,然而Lyapunov函數(shù)構(gòu)造很困難[6-7].Lakshmikantham等[8]引入了錐值Lyapunov函數(shù)的概念,并且利用這種方法,得到了微分系統(tǒng)的比較定理和穩(wěn)定性的相關(guān)結(jié)果.Liu等[9]利用錐值Lyapunov函數(shù)發(fā)展了比較定理.Akinyele等[10]利用錐值Lyapunov函數(shù)討論了微分系統(tǒng)的穩(wěn)定性.

      本文利用錐值Lyapunov函數(shù)給出了關(guān)于分?jǐn)?shù)階時(shí)滯微分系統(tǒng)與微分系統(tǒng)的新的比較定理.通過(guò)這個(gè)比較定理對(duì)分?jǐn)?shù)階時(shí)滯微分系統(tǒng)進(jìn)行了分析,給出該系統(tǒng)兩度量穩(wěn)定的判定準(zhǔn)則.

      1 預(yù)備知識(shí)

      其中G∈C[R+×PCτ,Rn],PCτ={φ∶[-τ,0]→Rn(τ≥0且為常數(shù)),φ(t)是連續(xù)函數(shù)},g∈C[R+×Rn,Rn],xt∈PCτ定義為xt(s)=x(t+s),-τ≤s≤0.

      定義1 Rn中的子集K如果滿足如下條件:Ⅰ)λK?K,λ≥0;Ⅱ)K+K?K;Ⅲ)K=K—;Ⅳ)K0≠?;V)K∩(-K)=0,則稱K為Rn上的錐,其中K—,K0及?K分別表示K的閉集,內(nèi)部和邊界.

      設(shè)x,y∈K,稱x≤ky當(dāng)且僅當(dāng)y-x∈K;稱x<K0y當(dāng)且僅當(dāng)y-x∈K0.

      定義2 稱集合K*={φ∶φ∈Rn,對(duì)所有x∈K,(φ,x)≥0}為K的伴隨錐,如果K*滿足定義1的條件Ⅰ)-V).

      通過(guò)以上定義可以得到K=(K*)*;x∈K0當(dāng)且僅當(dāng)(φ,x)>0;x∈?K當(dāng)且僅對(duì)某些φ∈K*0,K0=K-{0},(φ,x)=0.

      定義3 稱函數(shù)g:D→Rn,D?Rn相對(duì)于K是擬單調(diào)非減的,如果對(duì)任意的x,y∈D且y-x∈?K,存在φ∈K*0,當(dāng)(φ,y-x)=0時(shí),有(φ,g(y)-g(x))≥0.

      為方便以后應(yīng)用,給出如下記號(hào).

      Κ0={a(u)∶a∈C[R+,R+],單調(diào)遞增且a(0)=0}.

      Κ={a∶a∈Κ0且嚴(yán)格單調(diào)遞增}.

      Κ1={b(x)∶b∈C[K,K],關(guān)于K單調(diào)遞增且x≤Kb(x)}.

      ∑={Q(x)∶Q∈C[K,R+],關(guān)于K單調(diào)遞增且Q(0)=0}.

      v0={V(t,x)∶V∈C[R+×Rn,K],V(t,x)關(guān)于x滿足局部Lipschitzian條件,且V(t,0)=0}.

      Γ={h∶R+×Rn→R+∶?x∈Rn,h(·,x)∈PC,h(t,·)∈[Rn,R+],inf h(t,x)=0}.

      S(h,ρ)={(t,x)∶(t,x)∈R+×Rn,h(t,x)<ρ,h∈Γ,ρ>0}.

      定義4 假設(shè)h0,h∈Γ,稱系統(tǒng)(1)的解x(t,t0,φ)為

      Ⅰ)(h0,h)穩(wěn)定的,如果對(duì)任意ε>0,t0∈R+,存在δ=δ(t0,ε)>0,使得對(duì)任意的τ∈R+,t≥τ,當(dāng)h0(t0,φ)<δ時(shí),有h(t,x(t,t0,φ))<ε,t≥t0.

      Ⅱ)(h0,h)一致穩(wěn)定的,如果對(duì)任意ε>0,t0∈R+,存在δ=δ(ε)>0,使得對(duì)任意τ∈R+,t≥τ,當(dāng)h0(t0,φ)<δ時(shí),h(t,x(t,t0,φ))<ε,t≥t0.

      定義5 假設(shè)Q0,Q∈Γ,稱系統(tǒng)(2)的解y(t,t0,y0)為

      Ⅰ)(Q0,Q)穩(wěn)定的,如果對(duì)任意ε>0,t0∈R+,存在δ=δ(t0,ε)>0,當(dāng)Q0(t0,y0)<δ時(shí),有Q(t,y(t,t0,y0))<ε,t≥t0.

      Ⅱ)(Q0,Q)一致穩(wěn)定的,如果對(duì)任意ε>0,t0∈R+,存在δ=δ(ε)>0,當(dāng)Q0(t0,y0)<δ時(shí),有Q(t,x(t,t0,y0))<ε,t≥t0.

      定義6 函數(shù)V∈v0關(guān)于系統(tǒng)(1)的Dini導(dǎo)數(shù)定義如下:

      2 主要結(jié)果

      參 考 文 獻(xiàn):

      [1] LAKSHMIKANTHAM V,LEELA S,VASUNDHARA D J.Theory of fractional dynamic systems[M].Cambradge:Cambradge Academic Publishers,2008.

      [2] MIHAILO P L,ALEKSANDAR M S.Finite-time stability analysis of fractional order time-delay systems:Gronwall's approach[J].Mathematical and computer Modeling,2009,49:475-481.

      [3] KATJA K.Asymptotic properties of fractional delay differential equations[J].Applied Mathematics and Computation,2011,218:1515-1532.

      [4] ZHANG Fengrong.A survey on the stability of fractional differential equation[J].The european physical journal special tpoics,2011,193:27-47.

      [5] 王培光,候穎,劉靜.一類分?jǐn)?shù)階微分方程的廣義擬線性化方法[J].河北大學(xué)學(xué)報(bào):自然科學(xué)版,2011,31(5):449-452.WANG Peiguang,HOU Ying,LIU Jing.Generalized quasilinearization for fractional differential equations[J].Journal of Hebei University:Natural Science Edition,2011,31(5):449-452.

      [6] LSKDHMIKSNYHSM V,LEELA S,SAMBANDHAM M.Lyapunov Theory for fractional differential equations[J].Communications in Applied Analysis,2008,12:365-376.

      [7] TRIGEASSOU J C,MAAMRI N,SABATIER J,et al.A Lyapunov approach to the stability of fractional differential equations[J].Singnal Processing,2011,12:365-445.

      [8] LAKSHIMIKANTHAM V,LEELA S.Cone-valued Lyapunov functions[J].Nonlinear Analysis,1977,1:215-222.

      [9] LI Kaien,YANG Guowei.Cone-valued Lyapunov functions and stability for impulsive functional differential equations[J].Nonlinear Analysis,2008,69:2184-2191.

      [10] AKINYELE O,ADEYEYE J O.Cone-valued Lyapunov functions and stbility of hybrid systems[J].Analysis,2001,8:203-214.

      (責(zé)任編輯:王蘭英)

      Stability of two measures for fractional order time-delay differential system

      WANG Peiguang1,ZHOU Binbin2
      (1.College of Electronic and Information Engineering,Hebei University,Baoding 071002,China;2.College of Mathematics and Computer Science,Hebei University,Baoding 071002,China)

      One kind of the fractional order time-delay system was discussed.Firstly,introduced the concept of cove,and given the Lyapunov function of cove-value fractional order time-delay differential system.Secondly,developed the comparison theorem,and got a new comparison theorem on the fractional order time-delay system and fractional system.Finally,concluded the stability criterion of two measures for fractional order time-delay system by the new comparison theorem.

      fractional order differential system;time-delay;stability of two measures

      O175.1

      A

      1000-1565(2013)02-0113-05

      10.3969/j.issn.1000-1565.2013.02.001

      2012-04-07

      國(guó)家自然科學(xué)基金資助項(xiàng)目(10971045)

      王培光(1969-),男,黑龍江哈爾濱人,河北大學(xué)教授,博士生導(dǎo)師,主要從事微分方程與控制理論的研究.E-mail:pgwang@hbu.edu.cn

      猜你喜歡
      河北大學(xué)時(shí)滯微分
      趙浩岳作品
      大觀(2022年7期)2022-08-18 13:42:24
      河北大學(xué)質(zhì)量技術(shù)監(jiān)督學(xué)院
      擬微分算子在Hp(ω)上的有界性
      帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
      上下解反向的脈沖微分包含解的存在性
      An Analysis of the Adventures of Robinson Crusoe
      借助微分探求連續(xù)函數(shù)的極值點(diǎn)
      河北大學(xué)工商學(xué)院招生現(xiàn)狀分析
      人間(2015年11期)2016-01-09 13:12:58
      對(duì)不定積分湊微分解法的再認(rèn)識(shí)
      一階非線性時(shí)滯微分方程正周期解的存在性
      道真| 泸溪县| 习水县| 华坪县| 金乡县| 卢湾区| 临湘市| 云南省| 班戈县| 台东县| 安国市| 治多县| 洛浦县| 精河县| 西乡县| 巴青县| 永定县| 明溪县| 沈阳市| 铁岭县| 新巴尔虎右旗| 贵阳市| 翁源县| 临海市| 饶河县| 鄂托克旗| 班戈县| 抚顺县| 淅川县| 故城县| 宾阳县| 安图县| 丁青县| 图木舒克市| 镇远县| 偏关县| 梓潼县| 邢台县| 全南县| 谢通门县| 惠安县|