鮑 軼,郭 麗
嘉興市第二醫(yī)院中心實(shí)驗(yàn)室,浙江嘉興 314000
γδT細(xì)胞表達(dá)共刺激分子及協(xié)同信號(hào)通路的研究進(jìn)展
鮑 軼,郭 麗
嘉興市第二醫(yī)院中心實(shí)驗(yàn)室,浙江嘉興 314000
根據(jù)T細(xì)胞受體的不同,人體T淋巴細(xì)胞分為αβT細(xì)胞和γδT細(xì)胞。近年αβT細(xì)胞共刺激信號(hào)在調(diào)節(jié)T細(xì)胞活化及耐受方面的研究取得了重要的進(jìn)展,而在γδT細(xì)胞相關(guān)的研究較少。明確這些共刺激分子及其信號(hào)通路在γδT細(xì)胞免疫應(yīng)答的不同階段發(fā)揮的不同正向負(fù)向調(diào)節(jié)作用,將為病毒感染、腫瘤、自身免疫性疾病、移植后排斥等疾病的治療提供新的前景。
αβT細(xì)胞;γδT細(xì)胞;共刺激分子;T細(xì)胞活化;T細(xì)胞耐受
Acta Acad Med Sin,2014,36(2):223-226
根據(jù)T細(xì)胞受體 (T cell receptor,TCR)的不同,人體T淋巴細(xì)胞分為αβT細(xì)胞和γδT細(xì)胞。αβT細(xì)胞被認(rèn)為是體內(nèi)主要的免疫T細(xì)胞,具有主要組織相容性復(fù)合物 (major histocompatibility complex,MHC)介導(dǎo)的特異性識(shí)別抗原細(xì)胞毒功能,γδT細(xì)胞具有非MHC限制性[1]。γδT細(xì)胞占外周血液 T細(xì)胞總數(shù)的5%以下,主要分布于皮膚、小腸、食管、肺、生殖器官及皮下組織,是皮膚表皮內(nèi)淋巴細(xì)胞和黏膜組織上皮內(nèi)淋巴細(xì)胞的主要成分之一,為非特異性免疫細(xì)胞[2]。γδT作為重要的效應(yīng)性T細(xì)胞,目前對(duì)其生物學(xué)意義的認(rèn)識(shí)尚處在起步階段。
根據(jù)表達(dá)Vγ和Vδ功能區(qū)的不同,γδT細(xì)胞譜系最主要的是兩大亞群:一個(gè)是表達(dá)TCR可變區(qū)Vδ2T細(xì)胞亞群,占外周血CD3+T淋巴細(xì)胞的1% ~10%[3];Vδ2T細(xì)胞能夠以MHC非限制性方式識(shí)別小分子磷酸化的非肽抗原,包括異戊烯焦磷酸和雙膦酸類藥物(如唑來(lái)膦酸)等[4]。雙膦酸類藥物可以作為強(qiáng)有力的抗原刺激物,促進(jìn)體內(nèi)外Vδ2T細(xì)胞活化和增殖,顯著激活γδT細(xì)胞的殺癌細(xì)胞活性[5]。另一個(gè)γδT細(xì)胞亞群表達(dá)TCR可變區(qū)Vδ1,主要存在于消化道和呼吸道的上皮組織及腫瘤浸潤(rùn)淋巴細(xì)胞中,研究表明Vδ1γδT 細(xì)胞在腫瘤免疫監(jiān)視中發(fā)揮重要作用[6]。Vδ1γδT細(xì)胞雖不能識(shí)別小分子磷酸化的非肽抗原,但可以識(shí)別來(lái)自上皮腫瘤表面的特異性抗原,包括UL16結(jié)合蛋白、MHC-I相關(guān)分子及CD1c等[7]。國(guó)外最新研究表明Vδ1是釋放細(xì)胞因子干擾素γ(interferon γ,IFN-γ)的主要γδT細(xì)胞亞群,但是分泌IFN-γ的γδT細(xì)胞一般不會(huì)同時(shí)分泌白介素 (interleukin,IL)-17A,在小鼠產(chǎn)單核細(xì)胞李斯特菌感染的模型中,Vδ4是釋放IL-17A的主要亞群,表明不同亞群的γδT細(xì)胞有著不同的殺傷腫瘤細(xì)胞過(guò)程及機(jī)制[6]。
機(jī)體抗腫瘤免疫應(yīng)答包括體液免疫和細(xì)胞免疫,其中發(fā)揮關(guān)鍵作用的是T細(xì)胞介導(dǎo)的特異性抗腫瘤免疫應(yīng)答。T細(xì)胞活化受雙信號(hào)的刺激,第一信號(hào)是TCR識(shí)別抗原肽-MHC分子復(fù)合物產(chǎn)生;第二信號(hào)為協(xié)同刺激信號(hào) (CD28)與其相應(yīng)受體結(jié)合,導(dǎo)致T細(xì)胞活化[8]。若T細(xì)胞第一信號(hào)TCR缺少適當(dāng)?shù)膮f(xié)同刺激信號(hào),T細(xì)胞活化受到抑制,會(huì)導(dǎo)致T細(xì)胞凋亡及抗原再刺激下的T細(xì)胞無(wú)反應(yīng)性。相對(duì)于T細(xì)胞活化,正常機(jī)體的T細(xì)胞還存在負(fù)反饋調(diào)節(jié)機(jī)制,目的是為防止T細(xì)胞的過(guò)度活化及防止自身免疫反應(yīng),這是由T細(xì)胞表達(dá)的負(fù)性共刺激分子協(xié)同信號(hào)通路激活完成,通過(guò)持續(xù)表達(dá)抑制信號(hào),減少T細(xì)胞增殖[9]。
CD28-B7目前發(fā)現(xiàn)的共刺激分子主要包括CD28及其家族成員。CD28表達(dá)在T細(xì)胞表面,它能與抗原遞呈細(xì)胞上的配體B7(B7-1、B7-2)結(jié)合,被認(rèn)為是最基本的協(xié)同刺激信號(hào)[10]。CD28-B7結(jié)合后,協(xié)同TCR、CD3產(chǎn)生雙信號(hào),正向活化αβT細(xì)胞中的作用機(jī)制已經(jīng)被公認(rèn)[11],然而CD28-B7在 γδT細(xì)胞中的作用仍然有較大的爭(zhēng)論[12]。通過(guò)研究分離的淋巴結(jié)中的淋巴細(xì)胞,CD28被發(fā)現(xiàn)持續(xù)表達(dá)在γδT細(xì)胞表面,協(xié)同刺激CD28激活,可促進(jìn)γδT細(xì)胞增殖及存活,主要通過(guò)刺激γδT細(xì)胞IL-2的產(chǎn)生及分泌,而IL-2信號(hào)通路對(duì)T細(xì)胞擴(kuò)增發(fā)揮重要作用[13]。動(dòng)物實(shí)驗(yàn)中獲得數(shù)據(jù)進(jìn)一步證明在CD28缺乏小鼠,感染情況下不能誘導(dǎo)IFN-γ+及IL-17+γδT細(xì)胞的擴(kuò)增,這一研究結(jié)果提示CD28協(xié)同刺激信號(hào)在γδT細(xì)胞的擴(kuò)增中是必須的[14]。
細(xì)胞毒性T淋巴細(xì)胞相關(guān)抗原-4及其配體B7和誘導(dǎo)協(xié)同刺激分子及其配體B7相關(guān)蛋白-1CD28家族其他成員還包括細(xì)胞毒性T淋巴細(xì)胞相關(guān)抗原4(cytotoxic T-lymphocyte antigen-4,CTLA4)及誘導(dǎo)協(xié)同刺激分子 (inducible T cell co-stimulator ligand,ICOS)。CTLA4與CD28有31%同源性,同樣可以與抗原遞呈細(xì)胞上的配體B7(B7-1,B7-2) 結(jié)合[15]。但是CTLA4在T細(xì)胞表面表達(dá)較CD28低,但其親和力高于CD28 20~50倍[15],功能上CTLA4為負(fù)性調(diào)控T細(xì)胞活化作用[15]。針對(duì)CTLA4為靶點(diǎn)的單克隆抗體易普利姆瑪,通過(guò)抑制CTLA4通路,增加T細(xì)胞的活化及增殖,現(xiàn)已被臨床批準(zhǔn)用于治療轉(zhuǎn)移性黑色素瘤[16]。CTLA4亦被報(bào)道在γδT細(xì)胞上表達(dá),但其作用機(jī)制是否和αβT細(xì)胞相似有待進(jìn)一步闡明。ICOS不能與B7(B7-1,B7-2)結(jié)合,但與B7的另一家族成員B7相關(guān)蛋白結(jié)合[17]。ICOS在靜息的 T細(xì)胞表面不表達(dá),但在T細(xì)胞活化的 48h 內(nèi)被誘導(dǎo)表達(dá)[17]。ICOS αβT細(xì)胞的作用機(jī)制較復(fù)雜且尚不明確,但研究顯示ICOS幫助細(xì)胞因子 IL4/IL-10/IL-13的分泌等[18],目前ICOS在γδT的表達(dá)及功能尚無(wú)深入研究。
程序性死亡受體-1及其配體程序性死亡-1(programmed death-1,PD-1)及B和T淋巴細(xì)胞衰減子 (B and T lymphocyte attenuator,BTLA)是近幾年被廣泛研究的另兩個(gè)CD28家族新成員。PD-1在健康人的靜息T細(xì)胞表面的PD-1的表達(dá)是極低的[19]。在T細(xì)胞激活后,細(xì)胞表達(dá)PD-1被誘導(dǎo)表達(dá);另外PD-1在疲憊 T細(xì)胞的表達(dá)較高[19]。PD-1與其配體PD-L1(B7-H1)及PD-L2(B7-DC)結(jié)合,其中PD-L1的各組織中表達(dá)較為廣泛,PD-1與PD-L1的結(jié)合被認(rèn)為是外周免疫耐受發(fā)揮關(guān)鍵作用;而PD-L2的表達(dá)限制于抗原遞呈細(xì)胞[20]。研究提示PD-1信號(hào)通路的激活最早的反應(yīng)是阻止T細(xì)胞的激活,其中包括阻止磷脂酰肌醇3-激酶信號(hào)通路的激活,所以PD-1介導(dǎo)的是負(fù)性調(diào)節(jié)信號(hào)[21]。在疲憊T細(xì)胞高表達(dá)的PD-1的作用是否和靜息T細(xì)胞表面的作用及信號(hào)通路相似,目前尚不清楚。在腫瘤患者,絕大多數(shù)上皮腫瘤患者在腫瘤細(xì)胞表面PD-L1誘導(dǎo)上調(diào),而在惡性淋巴系統(tǒng)腫瘤患者PD-L2上調(diào)[21]。由于PD-1通路激活發(fā)揮的免疫抑制作用,因而針對(duì)PD-1通路阻斷的抗PD-1單克隆抗體臨床前期實(shí)驗(yàn)用于治療惡性黑色素瘤及非小細(xì)胞肺癌[22]。有研究顯示正常人外周血的γδT在小分子磷酸化的非肽抗原的刺激下,PD-1迅速表達(dá)在γδT細(xì)胞表面,后期隨著γδT數(shù)量的增加,PD-1表達(dá)逐步下降,功能性研究顯示PD-1+γδT比PD-1-γδT分泌更多的IL-2[23-24]。另有研究提示PD-1最主要表達(dá)在終末效應(yīng)記憶T細(xì)胞 (CD45RA+CD27-)γδT亞群,TCR與配體結(jié)合后激活,可上調(diào)PD-1的表達(dá),這一研究結(jié)果與PD-1在正常人外周血的研究相似[25]。
BTLA及其配體皰疹病毒入侵介質(zhì)BTLA是近年發(fā)現(xiàn)的負(fù)性協(xié)同刺激分子,雖然其結(jié)構(gòu)嚴(yán)格意義上與CD28及CTLA4有較大差別,但目前仍把它歸類在CD28家族。人BTLA分布于細(xì)胞膜表面的Ⅰ型跨膜糖蛋白。BTLA在T細(xì)胞中有著高表達(dá),在B細(xì)胞、NK細(xì)胞、巨噬細(xì)胞及樹(shù)突狀細(xì)胞中亦有著不同水平的表達(dá)。在外周血中BTLA表達(dá)于成熟的淋巴細(xì)胞中,包括T細(xì)胞 (αβT細(xì)胞和γδT細(xì)胞) 及 B細(xì)胞,BTLA在調(diào)節(jié)性T細(xì)胞中不表達(dá)[26]。BTLA在靜止期T細(xì)胞中低表達(dá),而在活化的T細(xì)胞高表達(dá)。BTLA配體是腫瘤壞死因子受體家族成員-皰疹病毒入侵介質(zhì) (herpes virus entry mediator,HVEM),HVEM廣泛表達(dá)于外周血 (T細(xì)胞及B細(xì)胞),通過(guò)其特定的結(jié)構(gòu)域與BTLA結(jié)合產(chǎn)生抑制性信號(hào)[27]??乖f呈細(xì)胞及調(diào)節(jié)性T細(xì)胞上的HVEM與T細(xì)胞上的BTLA相互作用,BTLA-HVEM信號(hào)通路激活可以抑制抗原刺激下的T細(xì)胞活化增殖,同時(shí)可以抑制T細(xì)胞分泌IL-2及INF-γ等細(xì)胞因子,減弱T細(xì)胞的殺細(xì)胞毒作用[27]。BTLA持續(xù)表達(dá)抑制信號(hào),減弱了T細(xì)胞增殖、分泌細(xì)胞因子以及清除腫瘤細(xì)胞等功能。有報(bào)道分離黑色素瘤中的淋巴細(xì)胞,體外擴(kuò)增后回輸體內(nèi),對(duì)那些治療有反應(yīng)的患者研究顯示其外周血中分化的CD8+細(xì)胞表面表達(dá)BTLA較高,但目前尚不清楚在輸入分化的CD8+細(xì)胞中BTLA發(fā)揮的功能作用[28]。另外,有研究表明外周血Vγ9 Vδ2 T細(xì)胞表面BTLA有表達(dá),并調(diào)控Vγ9 Vδ2 T細(xì)胞增殖及分化中的作用,在靜息的γδT表面,BTLA存在的高表達(dá),特別是幼稚型γδT,在中央型記憶T細(xì)胞及效應(yīng)型記憶T細(xì)胞表達(dá)下調(diào),而PD-1主要表達(dá)在終末效應(yīng)記憶T細(xì)胞 (CD45RA+CD27-)γδT亞群,這一結(jié)果提示在γδT亞群PD-1及BTLA的抑制性作用是不同的[25]。應(yīng)用BTLA阻斷劑,可抑制γδT信號(hào),抵消 BTLA γδT增殖,另外在 γδT增殖的過(guò)程中使用抗 BTLA抗體,可以部分阻斷 γδT在 S期[25]。Vγ9 Vδ2 T細(xì)胞具有腫瘤細(xì)胞殺傷作用,在惡性腫瘤中其數(shù)量常被下調(diào),因此惡性淋巴瘤患者,可能BTLA-HVEM信號(hào)通路在抑制γδT增殖中發(fā)揮重要作用,而通過(guò)干預(yù)腫瘤微環(huán)境中γδT細(xì)胞中BTLAHVEM結(jié)合,可以促進(jìn)殺腫瘤的γδT細(xì)胞的擴(kuò)增。
綜上,γδT細(xì)胞的共刺激分子及信號(hào)通路的研究起步較晚,目前已有的研究提示γδT細(xì)胞的活化和增殖需要CD28信號(hào)通路的激活。另外共刺激信號(hào)PD-1/PD-L1及BTLA-HVEM在γδT細(xì)胞活化中發(fā)揮負(fù)性調(diào)控作用,但由于PD-1及BTLA在γδT細(xì)胞表達(dá)的差異性提示兩者在抑制功能上的不同。另外,隨著抗PD-1及PD-L1的單克隆抗體BMS-936558及BMS-936559在黑色素瘤及非小細(xì)胞肺癌的臨床前期試驗(yàn)獲得陽(yáng)性結(jié)果,以擴(kuò)增γδT細(xì)胞的細(xì)胞免疫治療腫瘤也被認(rèn)為是抗腫瘤新策略,因而進(jìn)一步深入研究明確γδT細(xì)胞的共刺激協(xié)同調(diào)控作用有著重要意義。
[1]Urban EM,Chapoval AI,Pauza CD.Repertoire development and the control of cytotoxic/effector function in human gammadelta T cells [J].Clin Dev Immunol,2010,2010:732893.
[2]Bonneville M,O’Brien RL,Born WK.Gammadelta T cell effector functions:a blend of innate programming and acquired plasticity [J].Nat Rev Immunol,2010,10(7):467-478.
[3]Beetz S,Wesch D,Marischen L,et al.Innate immune functions of human gammadelta T cells [J].Immunobiology,2008,213(3-4):173-182.
[4]Marten A,Lilienfeld-Toal M,Buchler MW,et al.Zoledronic acid has direct antiproliferative and antimetastatic effect on pancreatic carcinoma cells and acts as an antigen for delta2 gamma/delta T cells [J].J Immunother,2007,30(4):370-377.
[5]Meraviglia S,Eberl M,Vermijlen D,et al.In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients [J].Clin Exp Immunol,2010,161(2):290-297.
[6]Hamada S,Umemura M,Shiono T,et al.IL-17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver[J].J Immunol,2008,181(5):3456-3463.
[7]Casetti R,Martino A.The plasticity of gamma delta T cells:innate immunity,antigen presentation and new immunotherapy [J].Cell Mol Immunol,2008,5(3):161-170.
[8]Rudd CE,Taylor A,Schneider H.CD28 and CTLA-4 coreceptor expression and signal transduction [J].Immunol Rev,2009,229(1):12-26.
[9]Chen L,F(xiàn)lies DB.Molecular mechanisms of T cell co-stimulation and co-inhibition [J].Nat Rev Immunol,2013,13(4):227-242.
[10]Smith-Garvin JE,Koretzky GA,Jordan MS.T cell activation[J].Annu Rev Immunol,2009,27:591-619.
[11]Salomon B,Bluestone JA.Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation[J].Annu Rev Immunol,2001,19:225-252.
[12]Ribot JC,debarros A,Silva-Santos B.Searching for“signal 2”:costimulation requirements of gammadelta T cells[J].Cell Mol Life Sci,2011,68(14):2345-2355.
[13]Ribot JC,Silva-Santos B.Differentiation and activation of gammadelta T lymphocytes:focus on CD27 and CD28 costimulatory receptors [J].Adv Exp Med Biol,2013,785:95-105.
[14]Ribot JC,Debarros A,Mancio-Silva L,et al.B7-CD28 costimulatory signals control the survival and proliferation of murine and human gammadelta T cells via IL-2 production[J].J Immunol,2012,189(3):1202-1208.
[15]Hodi FS.Cytotoxic T-lymphocyte-associated antigen-4 [J].Clin Cancer Res,2007,13(18 Pt1):5238-5242.
[16]Lens M,Testori A,F(xiàn)erucci PF.Ipilimumab targeting CD28-CTLA-4 axis:new hope in the treatment of melanoma [J].Curr Top Med Chem,2012,12(1):61-66.
[17]Simpson TR,Quezada SA,Allison JP.Regulation of CD4 T cell activation and effector function by inducible costimulator(ICOS) [J].Curr Opin Immunol,2010,22(3):326-332.
[18]Greaves P,Gribben JG.The role of B7 family molecules in hematologic malignancy [J].Blood,2013,121(5):734-744.
[19]Riley JL.PD-1 signaling in primary T cells [J].Immunol Rev,2009,229(1):114-125.
[20]Gianchecchi E,Delfino DV,F(xiàn)ierabracci A.Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity [J].Autoimmun Rev,2013,12(11):1091-1100.
[21]Kulpa DA,Lawani M,Cooper A,et al.PD-1 coinhibitory signals:the link between pathogenesis and protection [J].Semin Immunol,2013,25(3):219-227.
[22]Hall RD,Gray JE,Chiappori AA.Beyond the standard of care:a review of novel immunotherapy trials for the treatment of lung cancer[J].Cancer Control,2013,20(1):22-31.
[23]Iwasaki M,Tanaka Y,Kobayashi H,et al.Expression and function of PD-1 in human gammadelta T cells that recognize phosphoantigens [J].Eur J Immunol,2011,41(2):345-355.
[24]Maslin B,Alexandrescu DT,Ichim TE,et al.Newer developments in the immunotherapy of malignant melanoma [J].J Oncol Pharm Pract,2014,20(1):3-10.
[25]Gertner-Dardenne J,F(xiàn)auriat C,Orlanducci F,et al.The coreceptor BTLA negatively regulates human Vgamma9Vdelta2 T-cell proliferation:a potential way of immune escape for lymphoma cells [J].Blood,2013,122(6):922-931.
[26]Pasero C,Olive D.Interfering with coinhibitory molecules:BTLA/HVEM as new targets to enhance anti-tumor immunity[J].Immunol Lett,2013,151(1-2):71-75.
[27]Ware CF,Sedy JR.TNF superfamily networks:bidirectional and interference pathways of the herpesvirus entry mediator(TNFSF14) [J].Curr Opin Immunol,2011,23(5):627-631.
[28]Radvanyi LG,Bernatchez C,Zhang M,et al.Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients [J].Clin Cancer Res,2012,18(24):6758-6770.
Research Advances in the Expression of Co-stimulatory Molecules and Signaling Pathways in γδT Cells
BAO Yi,GUO Li
Key Laboratory of Jiaxing Second Hospital,Jiaxing,Zhejiang 314000,China
BAO YiTel:0573-82073185,E-mail:ybao2011@gmail.com
Human T lymphocytes are divided into αβT cells and γδT cells on the basis of the different expressions of T cell receptors.In recent years,the studies of the regulation of T cell activation and tolerance by co-stimulatory molecules and their signaling pathways in αβT cell have made remarkable progress;however,relatively fewer investigations have been performed on γδT cells.A clearer understanding of the roles of co-stimulatory molecules and their signaling pathways in the positive/negative regulation of γδT cells at different stages will provides new insights for the treatment of viral infections,cancer,autoimmune diseases,transplant rejection,and other conditions.
αβT cell; γδT cell;co-stimulatory molecules;T cell activation;T cell tolerance
鮑 軼 電話:0573-82073185,電子郵件:ybao2011@gmail.com
R392
A
1000-503X(2014)02-0223-04
10.3881/j.issn.1000-503X.2014.02.022
國(guó)家自然青年科學(xué)基金 (81101707)、浙江省中醫(yī)藥基金 (2011ZA104)和嘉興科技計(jì)劃項(xiàng)目 (2012AY1071-2)Supported by the National Natural Sciences Foundation for Young Scholars of China(81101707),Zhejiang Traditional Chinese Medicine Foundation Project(2011ZA104),and the Science and Technology Bureau of Jiaxing(2012AY1071-2)
2013-11-12)
中國(guó)醫(yī)學(xué)科學(xué)院學(xué)報(bào)2014年2期