文小霞等
摘 要 [HTSS]建立了一種用于多重細菌鑒定的微流控芯片分析方法。在芯片上實現(xiàn)細菌進樣、培養(yǎng)和鑒定,結(jié)合培養(yǎng)池陣列的空間分辨力以及菌種特異性顯色培養(yǎng)基的顏色分辨力,可以實現(xiàn)多重細菌檢測。實驗選用4種泌尿系統(tǒng)感染常見病原菌作為模擬測試對象,結(jié)果顯示,這種芯片方法在15 h內(nèi)可完成細菌鑒定,
關(guān)鍵詞 微流控芯片; 細菌鑒定; 多重顯色反應(yīng); 快速檢測
1 引 言
細菌感染可以引發(fā)多種疾病,不僅發(fā)病率高而且經(jīng)常引發(fā)危重病情,因而需要及時診治。細菌感染的主要治療手段是使用抗生素,而抗生素治療需要在明確病原的前提下合理選擇抗生素的種類和劑量[1]。傳統(tǒng)的細菌鑒定方法是將病人體液標(biāo)本涂布在含有培養(yǎng)基的瓊脂平板上培養(yǎng)增菌,繼而挑選優(yōu)勢細菌培養(yǎng)鑒定并且進行藥敏實驗。這種方法存在的問題在于樣品消耗量大和檢測時間長[2,3],經(jīng)常無法有效滿足臨床工作的需求[4]。此外,傳統(tǒng)細菌鑒定方法大多依賴于眾多的大型專業(yè)化設(shè)備[5~8],限制了該技術(shù)在基層醫(yī)療單位的推廣。因此,應(yīng)發(fā)展簡便、快速和便攜式細菌鑒定平臺, 以滿足臨床工作的迫切需要。
為解決傳統(tǒng)細菌鑒定平臺的不足,先期研究報導(dǎo)了一系列基于微流控芯片的細菌鑒定[9~15]和藥物敏感性分析技術(shù)[16~20]。上述微流控細菌分析技術(shù)較之傳統(tǒng)方法具有多方面優(yōu)勢:首先,芯片微分析平臺有效降低了試樣消耗量并提高了測試通量[21];其次,大多數(shù)芯片細菌分析方法可以省略增菌步驟,因而顯著縮短了分析時間[22];再者,芯片細菌分析平臺操作簡便且小巧便攜,非常適合于應(yīng)對現(xiàn)場快速檢測[23]。綜上所述,微流控芯片技術(shù)為細菌分析提供了一種理想的解決方案。
臨床上,細菌感染多表現(xiàn)為呼吸、消化、泌尿等系統(tǒng)的炎癥,每個系統(tǒng)感染的病原均包括多種細菌,故而要求細菌分析平臺具備多重病原菌鑒定能力。前期報導(dǎo)的微流控細菌分析技術(shù),大多只針對一種特定細菌[14,23,24],因而臨床應(yīng)用價值有限。微流控芯片具有結(jié)構(gòu)設(shè)計靈活的特點,便于在微小尺寸下實現(xiàn)集成式和高通量分析,這一優(yōu)勢非常適合于高通量細菌分析鑒定[25]。因此,有望借助微流控技術(shù)實現(xiàn)多重細菌鑒定。
本研究發(fā)展了一種用于多重細菌鑒定的微流控分析方法。所用微流控裝置結(jié)合芯片和外部控制檢測系統(tǒng),可以實現(xiàn)進樣、細菌培養(yǎng)和鑒定。實驗選用一組泌尿系統(tǒng)感染常見病原菌作為模擬對象,測試了系統(tǒng)的性能,繼而使用臨床樣品驗證了該分析方法的實用性。實驗結(jié)果顯示,這種微流控細菌鑒定方法可以簡便可靠地實現(xiàn)多重細菌鑒定。
2 實驗部分
2.1 儀器、試劑與材料
3 結(jié)果與討論
3.1 微流控芯片設(shè)計
細菌生長需要適宜的溫度、濕度、氧含量以及足夠的養(yǎng)份供應(yīng)。本實驗的檢測對象均為需氧菌,因此選用具有透氣性的PDMS加工芯片。芯片底層為PDMS薄層,芯片頂部的扣板具有空隙,允許芯片與外部進行充分的氣體交換。芯片置放于37 ℃溫控板上為細菌生長提供適宜溫度,同時加熱條件下蓄水池內(nèi)水分的蒸發(fā)可以保證足夠的濕度。芯片培養(yǎng)池內(nèi)固定的瓊脂內(nèi)包含培養(yǎng)基,為細菌生長提供養(yǎng)分。實驗設(shè)計培養(yǎng)池體積約為19 μL,容納14 μL凝固顯色培養(yǎng)基及5 μL細菌懸液,可以為細菌生長提供足夠的空間。
在重力和表面張力作用下,引入芯片的細菌懸液在流動過程中會順序充滿一系列培養(yǎng)池[27]。由于層流效應(yīng),進樣中頂層的流體極少擾動培養(yǎng)池中液體,加之瓊脂的阻滯效應(yīng)可以限制不同培養(yǎng)池中顯色試劑的交叉污染。培養(yǎng)中,相鄰培養(yǎng)池之間的通道被扣板上的突起壓閉,起到微閥作用限制培養(yǎng)池間顯色物質(zhì)的相互干擾(圖2b)。培養(yǎng)池內(nèi)的瓊脂含有菌種特異性顯色培養(yǎng)基,只有某種特定細菌的代謝產(chǎn)物方可使培養(yǎng)基中底物顯色。依據(jù)顯色培養(yǎng)池位置,就可以判定細菌的種類。這樣,結(jié)合細菌培養(yǎng)池陣列的空間分辨力以及特異性顯色反應(yīng)的菌種分辨力,就可以實現(xiàn)多重細菌檢測。
3.2 顯色培養(yǎng)基濃度的選擇
實驗使用的瓊脂培養(yǎng)基中含有顯色底物,可以在細菌產(chǎn)生的特異性酶作用下發(fā)生顯色反應(yīng)。實驗考察了培養(yǎng)基濃度對芯片培養(yǎng)細菌顯色效果的影響,結(jié)果顯示顯色強度隨著培養(yǎng)基濃度的增高而加深(圖3a)。然而,使用過高濃度培養(yǎng)基時由于粘度增加使得操作困難。綜合考慮,實驗選用金黃色葡萄球菌培養(yǎng)基濃度為0.2 g/mL,大腸桿菌、腸球菌、沙門氏菌培養(yǎng)基濃度均為0.15 g/mL。[TS(][HT5”SS]圖3 圖a1~4為相機拍照不同濃度培養(yǎng)基的顯色效果,每種培養(yǎng)基配制4種不同濃度,每種濃度做3個平行測試,培養(yǎng)15 h后拍照。(1:金黃色葡萄球菌;2:大腸桿菌;3:糞腸球菌;4:腸炎沙門氏菌); 圖b 1~8為相機拍照不同金黃色葡萄球菌
實驗比較了芯片和傳統(tǒng)細菌培養(yǎng)方法中細菌的生存率與增殖率。以金黃色葡萄球菌(ATCC25923)為例,在分別培養(yǎng)0,2,4,6,8,10 h后,顯微鏡下計數(shù)結(jié)果顯示使用兩種方法培養(yǎng)的細菌數(shù)量在此階段不斷增加(圖4 a~f),呈現(xiàn)指數(shù)增殖狀態(tài)(圖4g),細菌生存率均為100%。得益于芯片微小培養(yǎng)池中充足的養(yǎng)分和良好的氧氣供應(yīng),芯片組細菌的增殖率總體上要高于培養(yǎng)瓶組(圖4h)。
[TS(][HT5”SS]圖4 SYTO 9 /PI染色熒光圖片顯示金黃色葡萄球菌(ATCC25923)在培養(yǎng)0,2,4,6,8,10 h后的生長情況(a~f)(放大倍數(shù)10×10,標(biāo)尺50 μm);(g)芯片和培養(yǎng)瓶中金黃色葡萄球菌生長曲線;(h)芯片和培養(yǎng)瓶中金黃色葡萄球菌增殖率比較
Fig.4 Fluorescence images (a-f) showing the density of Staphylococcus aureus(ATCC25923)(stained with SYTO 9 /PI)at different incubation time ( 0, 2, 4, 6, 8, 10 h).(Magnification factor: 10×10,scale bar: 50 μm); (g) Plots of bacteria density vs time; (h) Proliferation rates of Staphylococcus aureus cultured on chips and in flasks [HT5][TS)]
3.4 芯片上多重細菌的鑒定
顯色培養(yǎng)基的原理是通過微生物自身代謝產(chǎn)物與相應(yīng)底物反應(yīng)顯色反應(yīng)進行細菌鑒定。顯色底物是由產(chǎn)色基因和微生物可代謝物質(zhì)組成,在微生物代謝產(chǎn)物作用下游離出產(chǎn)色基因因而顯示一定顏色,便于在細菌培養(yǎng)的同時完成菌種鑒定。利用顯色培養(yǎng)基進行微生物的篩選分離,其靈敏度和特異性都要優(yōu)于傳統(tǒng)培養(yǎng)基。臨床上使用傳統(tǒng)方法細菌培養(yǎng)時間需要16~48 h[28],而本實驗利用基于顯色培養(yǎng)基的芯片方法可以在15 h內(nèi)同步完成增菌與鑒定。灌入等比例的4種細菌懸液培養(yǎng)后,所得的顯色結(jié)果與產(chǎn)品說明書一致(圖5b)。將4種顯色培養(yǎng)基分別加入一張芯片的指定細菌培養(yǎng)池中,即可同時檢測4種細菌。這種芯片細菌鑒定方法具有良好的擴展能力,未來我們將使用更多種類的顯色培養(yǎng)基以實現(xiàn)多種細菌的同步檢測。實驗還發(fā)現(xiàn)某些細菌具有產(chǎn)氣特性導(dǎo)致培養(yǎng)池中較多氣泡,因而影響了顏色判讀,這個問題需要在后續(xù)工作中解決。
3.5 芯片細菌檢測方法與傳統(tǒng)方法的比較
實驗利用芯片和傳統(tǒng)方法平行檢測了40例尿路感染病人的尿液標(biāo)本,檢測結(jié)果如表1所示。在40例標(biāo)本中,芯片方法鑒定出10例大腸桿菌,5例腸球菌,2例金黃色葡萄球菌,10例陰性,其余13例為除上述金黃色葡萄球菌,大腸桿菌,糞腸球菌和腸炎沙門氏菌以外的其它細菌感染。標(biāo)本中各種菌的典型顯色效果(圖5c~e)與陽性對照(標(biāo)準(zhǔn)菌液,圖b)一致。對于實驗包含的檢測對象,芯片方法與傳統(tǒng)方法的符合率為
96.3%。由于目前實驗設(shè)定的檢測范圍有限,芯片方法的總檢出率較低,需要在后續(xù)實驗中增加顯色培養(yǎng)基的種類。
[TS(][HT5”SS]圖5 芯片上多重細菌檢測結(jié)果
Fig.5 Multiplex bacteria identification on the microchip
a. 陰性對照 (含有四種標(biāo)準(zhǔn)菌株等比例混合液的尿液標(biāo)本,4℃保存15 h);b. 陽性對照 (含有四種標(biāo)準(zhǔn)菌株等比例混合液的尿液標(biāo)本培養(yǎng)15 h,從左往右4列培養(yǎng)池分別含有金黃色葡萄球菌、大腸桿菌、腸球菌、沙門氏菌顯色培養(yǎng)基); c. 金黃色葡萄球菌(+)臨床尿液標(biāo)本(第1列顯綠色);d. 大腸桿菌(+)臨床尿液標(biāo)本(第2列顯紅色);e腸球菌(+)臨床尿液標(biāo)本(第3列顯暗黃色)。
a. Negative control (Urine sample contains the four standard bacteria strains of equal density, kept at 4℃ for 15 h); b-e: Urine samples were incubated at 37℃ for 15 h, for simultaneous detection of 4 bacteria using the chromogenic method. b. Positive control (Urine sample contains the four standard bacteria strains of equal density. The four rows of chambers from left to right contains chromogenic medium specific to Staphylococcus aureus,Escherichia coli,Enterococcus and Salmonella, respectively); c. A typical Staphylococcus aureus (+) case, with the first row of chambers appeared green; d. A typical Escherichia coli (+) case, with the second row of chambers appeared red; e. A typical Enterococcus (+) case, with the third row of chambers appeared dark yellow.(Incubation time for b-e: 15 h).[HT5][TS)]
[HT5”SS][HJ*4]表1 微流控芯片和傳統(tǒng)方法細菌檢測結(jié)果比較
Table 1 Comparison of bacteria identification using the microchip and the conventional method
[HT6SS][BG(][BHDFG3,WK9*3/4,WK9*4\.2,K*2,K93/4,WK94。2W]菌名Bacteria傳統(tǒng)細菌鑒定法Conventional method微流控芯片顯色法Microchip method菌名Bacteria傳統(tǒng)細菌鑒定法Conventional method微流控芯片顯色法Microchip method
大腸埃希菌Escherichia coli1010
腸球菌Enterococcus55
金黃色葡萄球菌Staphylococcus aureus32無細菌生長Bacteria (-)99其它菌Other bacteria or fungi13*0檢出率
Detection rate100%65%[BHDFG6,WKZQ0W]* 傳統(tǒng)方法鑒定結(jié)果為除外本實驗所選4種檢測對象的其它細菌和真菌: 5例為奇異變形桿菌、2例為銅綠假單胞菌、4例為白色念珠菌、2例為酵母菌。
* Samples were identified as containing bacteria or fungi other than the 4 detection objects: Proteus mirabilis, 5 cases; Pseudomonas aeruginosa, 2 cases; Candida albicans, 4 cases and Candida, 2 cases. [BG)W][HT5][HJ]
上述結(jié)果表明,本研究發(fā)展的微流控細菌分析系統(tǒng)可以簡便快速地實現(xiàn)多重細菌鑒定,因而有望發(fā)展成為一種有力的細菌檢測工具。
References
1 Takagi R, Fukuda J, Nagata K, Yawata Y, Nomura N, Suzuki H. Analyst, 2013, 138(4): 1000-1003
2 Gan M, Tang Y, Shu Y, Wu H,Chen L. Small, 2012, 8(6): 863-867
3 Luo X, Shen K, Luo C, Ji H, Ouyang Q,Chen Y. Biomedical Microdevices, 2010, 12(3): 499-503
4 Pulido M R, GarcíaQuintanilla M, MartinPea R, Cisneros J M, McConnell M J. Journal of Antimicrobial Chemotherapy, 2013, 68(12): 2710-2717
5 Driskell J D K K M, Lipert R J, Porter M D, Neill J D,Ridpath J F. Anal. Chem., 2005, 77(19): 6147-6154
6 Matos Pires N M D T. Sensors (Basel), 2013, 13(12): 15898-15911
7 Salam Faridah U Y, Tothill Ibtisam E. Talanta, 2013, 115: 761-767
8 Pierce S E, Bell R L, Hellberg R S, Cheng C M, Chen K S, WilliamsHill D M, Martin W B, Allard M W. Applied and Environmental Microbiology, 2012, 78(23): 8403-8411
9 Zuo P, Li X, Dominguez D C,Ye B C. Lab Chip, 2013, 13(19): 3921-3928
10 Issadore D, Chung H J, Chung J, Budin G, Weissleder R, Lee H. Advanced Healthcare Materials, 2013, 2(9): 1224-1228
11 Cooper R, Leslie D C, Domansky K, Jain A, Yung C W, Cho M, Workman S, Super M,Ingber D. Lab Chip, 2013, 14(1): 182-188
12 Bouguelia S, Roupioz Y, Slimani S, Mondani L, Casabona M G, Durmort C, Vernet T, Calemczuk R, Livache T. Lab Chip, 2013, 13(20): 4024-4032
13 Wang S Q, Inci F, Chaunzwa T L, Ramanujam A, Vasudevan A, Subramanian S, Ip A C F, Sridharan B, Gurkan U A, Demirci U. International Journal of Nanomedicine, 2012, 7: 2591-2600
14 Derda R, Lockett M R, Tang S K Y, Fuller R C, Maxwell E J, Breiten B, Cuddemi C A, Ozdogan A,Whitesides G M. Anal. Chem., 2013, 85(15): 7213-7220
15 David Cowcher Y X, Goodacre R. Anal. Chem., 2013, 85(6): 3297-3302
16 Shariff V A AR S M S, Yadav T, M R. Journal of Clinical and Diagnostic Research, 2013, 7(6): 1027-1030
17 Choi J, Jung Y G, Kim J, Kim S, Jung Y, Na H, Kwon S. Lab Chip, 2013, 13(2): 280-287
18 Deiss F, FunesHuacca M E, Bal J, Tjhung K F,Derda R. Lab Chip, 2013, 14(1): 167-171
19 Kalashnikov M, Lee J C, Campbell J, Sharon A,SauerBudge A F. Lab Chip, 2012, 12(21): 4523-4532
20 Mohan R, Mukherjee A, Sevgen S E, Sanpitakseree C, Lee J, Schroeder C M,Kenis P J A. Biosensors and Bioelectronics, 2013, 49: 118-125
21 Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P,Wang J. Biosensors and Bioelectronics, 2011, 26(5): 1993-1999
22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121
23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278
24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270
25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092
26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984
27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001
張 瓊, 周小棉, 嚴 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學(xué), 2012, 40(7): 996-1001
28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24
Rapid Identification of Multiple Bacteria on a Microfluidic Chip
WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,
CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2
1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,
Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)
2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)
Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.
Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection
(Received 23 December 2013; accepted 2 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)
22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121
23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278
24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270
25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092
26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984
27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001
張 瓊, 周小棉, 嚴 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學(xué), 2012, 40(7): 996-1001
28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24
Rapid Identification of Multiple Bacteria on a Microfluidic Chip
WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,
CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2
1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,
Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)
2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)
Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.
Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection
(Received 23 December 2013; accepted 2 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)
22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121
23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278
24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270
25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092
26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984
27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001
張 瓊, 周小棉, 嚴 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學(xué), 2012, 40(7): 996-1001
28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24
Rapid Identification of Multiple Bacteria on a Microfluidic Chip
WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,
CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2
1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,
Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)
2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)
Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.
Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection
(Received 23 December 2013; accepted 2 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)