• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于EMD—PSO—SVM誤差校正模型的國際碳金融市場價格預(yù)測

      2014-07-29 09:24高楊李健
      中國人口·資源與環(huán)境 2014年6期
      關(guān)鍵詞:粒子群算法支持向量機(jī)

      高楊 李健

      摘要 國際碳金融市場價格預(yù)測是制定碳金融市場政策和提高風(fēng)險管理能力的基礎(chǔ)。近年來國際碳市場價格呈現(xiàn)出非平穩(wěn)、非線性等不規(guī)律特性,傳統(tǒng)應(yīng)用于社會經(jīng)濟(jì)時間序列的統(tǒng)計模型已經(jīng)越來越難以滿足日漸復(fù)雜的社會經(jīng)濟(jì)系統(tǒng)的需要?;诖吮疚慕⒘嘶诮?jīng)驗?zāi)B(tài)分解(EMD)-粒子群算法(PSO)-支持向量機(jī)(SVM)的國際碳金融市場價格誤差校正預(yù)測模型。數(shù)據(jù)選取2008年3月-2013年9月ICE碳排放期貨交易所的CER期貨(DEC12)和EUA期貨(DEC12)的日交易結(jié)算價格作為考察樣本進(jìn)行仿真驗證。結(jié)果顯示:①引入EMD方法可以有效解決誤差序列隨機(jī)性強(qiáng)、相鄰頻帶的干擾可能造成誤差序列無法體現(xiàn)反映全部系統(tǒng)動力信息的缺陷;②校正后的預(yù)測值與誤差預(yù)測值的趨勢具有較高的一致性,預(yù)測結(jié)果滯后性和拐點誤差大的問題得到了很好的解決;③預(yù)測結(jié)果較其他常用的國際碳金融價格預(yù)測模型進(jìn)行了比較分析,預(yù)測精度有了明顯提高。本研究提出的預(yù)測模型可以為我國針對目前國際碳價格市場所呈現(xiàn)的波動特征下的碳金融市場價格預(yù)測提供新的方法和借鑒。

      關(guān)鍵詞 碳金融價格預(yù)測;誤差預(yù)測;經(jīng)驗?zāi)B(tài)分解;粒子群算法;支持向量機(jī)

      中圖分類號 TP18;F830 文獻(xiàn)標(biāo)識碼 A 文章編號 1002-2104(2014)06-0163-08 doi:103969/jissn1002-2104201406024

      我國“十二五”期間首次明確提出要建立碳排放交易市場,完善碳排放交易制度。而可靠的碳金融價格預(yù)測作為重要的決策工具可以為我國制定碳排放交易市場相關(guān)政策、提高碳市場風(fēng)險管理能力及減少碳資產(chǎn)流失提供有效的依據(jù)。2005年《京都議定書》的正式生效,標(biāo)志著利用市場機(jī)制進(jìn)行溫室氣體減排的開端,碳交易市場在全球迅速發(fā)展起來。目前,碳衍生產(chǎn)品市場的發(fā)展速度要遠(yuǎn)超碳現(xiàn)貨市場,而且碳排放現(xiàn)貨、期貨、遠(yuǎn)期、期權(quán)等碳金融產(chǎn)品已發(fā)展成為市場參與者實現(xiàn)碳排放的投資組合收益、增強(qiáng)金融風(fēng)險管理的主要金融管理工具[1]。據(jù)世界銀行統(tǒng)計并預(yù)測,2011年全球碳排放市場總交易市場規(guī)模達(dá)

      1 760億美元,交易量達(dá)103億t CO2當(dāng)量,較2010年增長11%,預(yù)計2020年將達(dá)到3.5萬億美元,將取代石油市場成為全球最大的商品交易市場[2]。目前,中國碳交易市場處于初步建設(shè)階段,尚處于碳價值鏈的末端,缺乏碳交易的議價權(quán),導(dǎo)致我國碳資產(chǎn)流失嚴(yán)重,2008年因碳價差就造成我國高達(dá)33億歐元的碳資產(chǎn)流失[3],建立自主碳交易體系、開展各類碳金融業(yè)務(wù)已成為我國參與全球國際碳金融競爭、實現(xiàn)可持續(xù)發(fā)展的當(dāng)務(wù)之急。而碳金融價格預(yù)測作為提高碳金融市場風(fēng)險防范能力和減少碳資產(chǎn)價值流失的有效途徑之一,目前已成為學(xué)術(shù)界所關(guān)注的熱點,所以探究和開發(fā)針對當(dāng)前國際碳金融市場價格波動特征下的價格預(yù)測方法是具有現(xiàn)實意義的研究課題。

      目前國內(nèi)外學(xué)者針對國際碳金融市場價格的預(yù)測方面進(jìn)行了大量的研究,所采用的模型和方法主要可以分為數(shù)據(jù)驅(qū)動模型和數(shù)據(jù)發(fā)掘模型兩種。數(shù)據(jù)驅(qū)動模型主要是對碳市場價格組成的時間序列進(jìn)行深層次的分析和模擬,包括利用ARMA,ARCH,GARCH、TGARCH等方法對碳金融市場價格進(jìn)行預(yù)測,如chevallier J等構(gòu)建了AR(1)-GARCH(1,1)模型對EUA現(xiàn)貨、EUA期貨和CER期貨價格波動特征進(jìn)行了預(yù)測與分析[4]。Suk Joon Byu和Hangjun Cho對比了GARCH、K近鄰算法和隱含波動率的對于碳期貨價格的波動性預(yù)測能力,研究結(jié)果表明GARCH模型要優(yōu)于K近鄰算法和隱含波動率[5]。Yudong Wang和Chongfeng Wu對比了基于單變量和多變量的GARCH族模型在能源市場中的預(yù)測效果,結(jié)果顯示多變量模型預(yù)測效果要優(yōu)于單變量模型[6]。C. G. Martos,J. Rodriguez和M. J. Sánchez建立了一個多元GARCH模型對碳排放配額價格進(jìn)行預(yù)測,結(jié)果顯示該常見的波動因素可以用于改善預(yù)測區(qū)間[7]。最近能從大量模糊的隨機(jī)數(shù)據(jù)中提取隱含的有價值信息的數(shù)據(jù)挖掘技術(shù)如混沌理論、灰色理論、神經(jīng)網(wǎng)絡(luò)以及支持向量機(jī)(Support Vector Machine, SVM)等越來越多的被引用到非平穩(wěn)、非線性時間序列的預(yù)測中來。其中,建立在統(tǒng)計學(xué)習(xí)理論基礎(chǔ)上的SVM方法在時間序列預(yù)測方面具有可以有效縮小泛化誤差區(qū)間,降低模型的結(jié)構(gòu)風(fēng)險,同時又保證樣本預(yù)測誤差最小的優(yōu)點[8]。鑒于碳金融市場價格時間序列的強(qiáng)噪聲特征,近幾年不少學(xué)者將SVM方法引入對國際能源價格和國際碳金融市場價格進(jìn)行預(yù)測和分析中,取得較好的預(yù)測結(jié)果。如Jinliang Zhang、Zhongfu Tan提出了一種基于WT、CLSSVM和EGARCH的混合預(yù)測模型,通過對西班牙電力期貨市場的節(jié)點邊際電價和市場供求平均電價進(jìn)行實證研究驗證了該模型具有較好的預(yù)測能力[9]。L.M. Saini、S.K. Aggarwal和A. Kumar構(gòu)建了一個基于GASVM的預(yù)測模型,并將該模型運(yùn)用到了澳大利亞國家電力市場(NEM)的兩個大型電力系統(tǒng)中進(jìn)行測試,結(jié)果顯示該模型具有較好的預(yù)測能力[10]。Bangzhu Zhu、Yiming Wei針對傳統(tǒng)ARIMA模型在預(yù)測非線性特征下碳期貨價格時的缺陷,構(gòu)建了ARIMALSSVM的混合模型,并對EU ETS下的兩種碳期貨價格進(jìn)行實證研究,結(jié)果驗證了該混合模型較傳統(tǒng)線性時間序列預(yù)測模型的優(yōu)越性[11]。朱幫助、魏一鳴構(gòu)建了基于GARCHPSOLSSVM的混合預(yù)測模型,并選用EU ETS下的不同到期的碳期貨合約進(jìn)行實證分析,取得了較好的預(yù)測結(jié)果[12]。這些在SVM方法基礎(chǔ)上的改進(jìn)方法使得預(yù)測精度相對于傳統(tǒng)預(yù)測方法有了較大的提高,但是現(xiàn)有方法仍未有效的解決運(yùn)用SVM方法的預(yù)測結(jié)果相對于實際值具有滯后性、拐點處誤差較大的缺陷,使得預(yù)測精度受到影響。

      針對上述問題,本文構(gòu)建了一種基于EMDPSOSVM的誤差校正預(yù)測模型。該模型是在SVM預(yù)測的基礎(chǔ)上,先運(yùn)用PSO算法對SVM模型的參數(shù)進(jìn)行優(yōu)化后對原始碳金融價格序列進(jìn)行初步預(yù)測,而后引入EMD方法將測試誤差分解為具有不同尺度特征的模態(tài)分量的疊加,并運(yùn)用PSOSVM模型對這些分量進(jìn)行訓(xùn)練并預(yù)測獲得誤差預(yù)測值后,再通過預(yù)測誤差對初步預(yù)測值的校正來解決預(yù)測滯后和拐點誤差較大的問題以提高預(yù)測精度,選取ICE碳交易所2008-2013年12月份到期的CER期貨合約和EUA期貨合約的日交易結(jié)算價格數(shù)據(jù)進(jìn)行實證模擬,最后將預(yù)測結(jié)果與其他常用預(yù)測方法的預(yù)測結(jié)果進(jìn)行了比較分析,驗證了該模型的可行性和精確性。

      1 研究方法

      1.1 EMD方法原理

      經(jīng)驗?zāi)B(tài)分解(Empirical Mode Decomposition)方法,亦稱HilbertHuang變換,是由美國國家宇航局的N E Huang在1998年提出的一種新的自適應(yīng)信號處理方法[13]。經(jīng)驗?zāi)B(tài)分解可以將信號中不同時間尺度的波動逐級分解后得到幾個具有不同尺度特征的本征模函數(shù)(Intrinsic Mode Function,IMF)和一個代表原始信號總體趨勢的剩余分量,分解結(jié)果能夠反映真實的物理過程,非常適合處理非平穩(wěn)、非線性的信號[14]。

      (DEC12)和EUA期貨日結(jié)算價格(DEC12)進(jìn)行實證分析,預(yù)測結(jié)果表明:

      (1)利用PSO算法對SVM建模中的參數(shù)進(jìn)行優(yōu)化,可以使參數(shù)的選擇更加合理,避免了人為選擇的隨機(jī)性。

      (2)將EMD方法引入對誤差的預(yù)測上來,建立了基于EMDPSOSVM方法融合的預(yù)測模型,使誤差信號中包含的信息通過各基本模態(tài)分量得以充分體現(xiàn),解決了誤差序列隨機(jī)性強(qiáng),相鄰頻帶的干擾可能造成誤差序列無法體現(xiàn)反映全部系統(tǒng)動力信息的缺陷,提高了預(yù)測數(shù)值的經(jīng)濟(jì)含義。

      (3)對本研究選取的CER期貨(DEC12)日交易結(jié)算價格和EUA期貨(DEC12)日交易結(jié)算價格進(jìn)行實證分析,結(jié)果表明該預(yù)測模型能夠有效解決預(yù)測結(jié)果滯后和拐點誤差較大的問題,并與其他碳金融領(lǐng)域常用的預(yù)測方法進(jìn)行了比較分析,提高了預(yù)測精度。

      國際碳金融市場是一個涉及政治、經(jīng)濟(jì)、社會、環(huán)境、科學(xué)技術(shù)等眾多因素的復(fù)雜系統(tǒng),對國際碳市場價格的預(yù)測及分析是一項非常重要的任務(wù),尤其對于中國來講,建立符合國情的碳金融市場,提高對國際碳市場價格的預(yù)測能力,對我國減少由于碳價差帶來的損失,提高對碳金融市場的風(fēng)險防范能力有著重要的意義。本研究提出的預(yù)測模型針對目前國際碳金融市場價格所呈現(xiàn)的屬性和特征,可以為我國未來碳金融市場價格預(yù)測提供新的思路和方法。限于篇幅,本研究僅對兩種主流碳貨進(jìn)行了測試,進(jìn)一步增加樣本的數(shù)量、擴(kuò)大測試范圍,在此模型基礎(chǔ)上建立多因素影響下的碳金融市場價格誤差校正預(yù)測模型是下一步的研究方向。

      (編輯:常 勇)

      參考文獻(xiàn)(References)

      [1]王蘇生, 常凱, 劉艷, 等. 碳排放便利收益與期權(quán)價值分析[J]. 系統(tǒng)管理學(xué)報, 2012, 21(4): 552-558.

      [2]王偉. 未來低碳經(jīng)濟(jì)戰(zhàn)略中需重視碳交易市場發(fā)展[DB/OL]. 中國碳排放交易網(wǎng), (2013-09-18)[2013-11-02].http://www.financialnews.com.cn/gj/gjyw/201206/t20120601_8769.html.

      [3]楊志, 郭兆暉. 低碳經(jīng)濟(jì)的由來、現(xiàn)狀與運(yùn)行機(jī)制[J]. 學(xué)習(xí)與探索, 2010, (2): 124-127.

      [4]Chevallier J. Volatility Forecasting of Carbon Prices Using Factor Models[J]. Economics Bulletin, 2010, 30(2): 1642-1660.

      [5]Byun S J, Cho H J. Forecasting Carbon Futures Volatility Using GARCH Models with Energy Volatilities[J]. Energy Economics, 2013, (40): 207-221.

      [6]Wang Y D, Wu C F. Forecasting Energy Market Volatility Using GARCH Models: Can Multivariate Models Beat Univariate Models?[J]. Energy Economics, 2012, (34): 2167-2181.

      [7]Martos C G, Rodriguez J, Sánchez M J. Modelling and Forecasting Fossil Fuels, CO2 and Electricity Prices and Their Volatilities[J]. Applied Energy, 2013, (101): 363-375.

      [8]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springerverlag, 1999: 78-82.

      [9]Zhang J L, Tan Z F. Dayahead Electricity Price Forecasting Using WT, CLSSVM and EGARCH Model[J]. Electrical Power and Energy Systems, 2013, (45): 362-368.

      [10]Saini L M, Aggarwal S K, Kumar A. Parameter Optimisation Using Genetic Algorithm for Support Vector Machinebased Priceforecasting Model in National Electricity Market IET[J]. Gener. Transm. Distrib., 2010, 4(1): 36-49.

      [11]Zhu B Z, Wei Y M. Carbon Price Forecasting with a Novel Hybrid ARIMA and Least Squares Support Vector Machines Methodology[J]. Omega, 2013, (41): 517-524.

      [12]朱幫助, 魏一鳴. 基于GMDHPSOLSSVM的國際碳市場價格預(yù)測[J]. 系統(tǒng)工程理論與實踐, 2011, 31(12): 2264-2271.

      [13]Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, (1971): 903-995.

      [14]謝曉陽, 喬新勇, 劉健敏. 柴油機(jī)工作不均勻性的振動檢測方法[J]. 噪聲與振動控制, 2013, 33(3): 79-83.

      [15]劉慧婷, 倪志偉, 李建洋. 經(jīng)驗?zāi)B(tài)分解方法及其實現(xiàn)[J]. 計算機(jī)工程與應(yīng)用. 2006, (32): 44-47.

      [16]Cortes C, Vapnik V. Supportvector Networks[J]. Machine Learning, 1995, (3): 273-297.

      [17]曾偉. 多子種群PSO優(yōu)化SVM的網(wǎng)絡(luò)流量預(yù)測[J]. 北京交通大學(xué)學(xué)報, 2013, 37(5): 62-66.

      [18]Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc IEEE Conf on Neural Networks, Perth: Piscataway 1995, (4): 1942-1948.

      [19]Liu J, Liu Z, Xiong Y. Method of Parameters Optimization in SVM Based on PSO[J]. Transactions on Computer Science and Technology, 2013, 2(1): 9-16.

      [20]石曉艷, 劉淮霞, 于水娟. 鯰魚粒子群算法優(yōu)化支持向量機(jī)的短期負(fù)荷預(yù)測[J]. 計算機(jī)工程與應(yīng)用, 2013, 49(11): 220-223.

      [21]Hassan M, Isa D, Rajkumar R, et al. Reducing Support Vector Machine Classification Error by Implementing Kalman Filter[J]. I.J. Intelligent Systems and Applications, 2013, (9): 10-18.

      [22]王玉, 郇志堅. 歐盟碳排放權(quán)交易市場的價格發(fā)現(xiàn)和波動溢出研究[J], 中國人口·資源與環(huán)境, 2012, 22(5): 244-249.

      Abstract The price prediction of international carbon finance market is the basis for developing carbon finance market policies and improving risk management capabilities. In recent years, the carbon price showing nonstationary and nonlinear irregular features, the traditional time series statistical model used in socioeconomic has become difficult to meet the increasingly complex social and economic systems. This paper established an error correction prediction model based on empirical mode decomposition (EMD), particle swarm optimization (PSO) and Support Vector Machine (SVM) to predict international carbon finance market price. Then, taking the carbon futures prices of CER and EUA with maturity called DEC 12 respective of Intercontinental Exchange as samples, empirical results show that: ①the introduced EMD method can resolve the deficiencies effectively that error sequences have strong randomness and interference of adjacent band may cause the outcome that the error sequences can not reflect all of the system dynamic information; ②the trend of corrected predicted values and error predicted values has high consistency, and the predict hysteresis and inflection point error can be solved effectively; ③the model has better prediction precision after comparing to other models commonly used in international carbon finance price prediction. This study proposes a model used in carbon price prediction to provide a new method and reference under the fluctuation characteristics of current international carbon market price.

      Key words carbon finance price prediction; error prediction; empirical mode decomposition; particle swarm optimization; support vector machines

      [12]朱幫助, 魏一鳴. 基于GMDHPSOLSSVM的國際碳市場價格預(yù)測[J]. 系統(tǒng)工程理論與實踐, 2011, 31(12): 2264-2271.

      [13]Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, (1971): 903-995.

      [14]謝曉陽, 喬新勇, 劉健敏. 柴油機(jī)工作不均勻性的振動檢測方法[J]. 噪聲與振動控制, 2013, 33(3): 79-83.

      [15]劉慧婷, 倪志偉, 李建洋. 經(jīng)驗?zāi)B(tài)分解方法及其實現(xiàn)[J]. 計算機(jī)工程與應(yīng)用. 2006, (32): 44-47.

      [16]Cortes C, Vapnik V. Supportvector Networks[J]. Machine Learning, 1995, (3): 273-297.

      [17]曾偉. 多子種群PSO優(yōu)化SVM的網(wǎng)絡(luò)流量預(yù)測[J]. 北京交通大學(xué)學(xué)報, 2013, 37(5): 62-66.

      [18]Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc IEEE Conf on Neural Networks, Perth: Piscataway 1995, (4): 1942-1948.

      [19]Liu J, Liu Z, Xiong Y. Method of Parameters Optimization in SVM Based on PSO[J]. Transactions on Computer Science and Technology, 2013, 2(1): 9-16.

      [20]石曉艷, 劉淮霞, 于水娟. 鯰魚粒子群算法優(yōu)化支持向量機(jī)的短期負(fù)荷預(yù)測[J]. 計算機(jī)工程與應(yīng)用, 2013, 49(11): 220-223.

      [21]Hassan M, Isa D, Rajkumar R, et al. Reducing Support Vector Machine Classification Error by Implementing Kalman Filter[J]. I.J. Intelligent Systems and Applications, 2013, (9): 10-18.

      [22]王玉, 郇志堅. 歐盟碳排放權(quán)交易市場的價格發(fā)現(xiàn)和波動溢出研究[J], 中國人口·資源與環(huán)境, 2012, 22(5): 244-249.

      Abstract The price prediction of international carbon finance market is the basis for developing carbon finance market policies and improving risk management capabilities. In recent years, the carbon price showing nonstationary and nonlinear irregular features, the traditional time series statistical model used in socioeconomic has become difficult to meet the increasingly complex social and economic systems. This paper established an error correction prediction model based on empirical mode decomposition (EMD), particle swarm optimization (PSO) and Support Vector Machine (SVM) to predict international carbon finance market price. Then, taking the carbon futures prices of CER and EUA with maturity called DEC 12 respective of Intercontinental Exchange as samples, empirical results show that: ①the introduced EMD method can resolve the deficiencies effectively that error sequences have strong randomness and interference of adjacent band may cause the outcome that the error sequences can not reflect all of the system dynamic information; ②the trend of corrected predicted values and error predicted values has high consistency, and the predict hysteresis and inflection point error can be solved effectively; ③the model has better prediction precision after comparing to other models commonly used in international carbon finance price prediction. This study proposes a model used in carbon price prediction to provide a new method and reference under the fluctuation characteristics of current international carbon market price.

      Key words carbon finance price prediction; error prediction; empirical mode decomposition; particle swarm optimization; support vector machines

      [12]朱幫助, 魏一鳴. 基于GMDHPSOLSSVM的國際碳市場價格預(yù)測[J]. 系統(tǒng)工程理論與實踐, 2011, 31(12): 2264-2271.

      [13]Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, (1971): 903-995.

      [14]謝曉陽, 喬新勇, 劉健敏. 柴油機(jī)工作不均勻性的振動檢測方法[J]. 噪聲與振動控制, 2013, 33(3): 79-83.

      [15]劉慧婷, 倪志偉, 李建洋. 經(jīng)驗?zāi)B(tài)分解方法及其實現(xiàn)[J]. 計算機(jī)工程與應(yīng)用. 2006, (32): 44-47.

      [16]Cortes C, Vapnik V. Supportvector Networks[J]. Machine Learning, 1995, (3): 273-297.

      [17]曾偉. 多子種群PSO優(yōu)化SVM的網(wǎng)絡(luò)流量預(yù)測[J]. 北京交通大學(xué)學(xué)報, 2013, 37(5): 62-66.

      [18]Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc IEEE Conf on Neural Networks, Perth: Piscataway 1995, (4): 1942-1948.

      [19]Liu J, Liu Z, Xiong Y. Method of Parameters Optimization in SVM Based on PSO[J]. Transactions on Computer Science and Technology, 2013, 2(1): 9-16.

      [20]石曉艷, 劉淮霞, 于水娟. 鯰魚粒子群算法優(yōu)化支持向量機(jī)的短期負(fù)荷預(yù)測[J]. 計算機(jī)工程與應(yīng)用, 2013, 49(11): 220-223.

      [21]Hassan M, Isa D, Rajkumar R, et al. Reducing Support Vector Machine Classification Error by Implementing Kalman Filter[J]. I.J. Intelligent Systems and Applications, 2013, (9): 10-18.

      [22]王玉, 郇志堅. 歐盟碳排放權(quán)交易市場的價格發(fā)現(xiàn)和波動溢出研究[J], 中國人口·資源與環(huán)境, 2012, 22(5): 244-249.

      Abstract The price prediction of international carbon finance market is the basis for developing carbon finance market policies and improving risk management capabilities. In recent years, the carbon price showing nonstationary and nonlinear irregular features, the traditional time series statistical model used in socioeconomic has become difficult to meet the increasingly complex social and economic systems. This paper established an error correction prediction model based on empirical mode decomposition (EMD), particle swarm optimization (PSO) and Support Vector Machine (SVM) to predict international carbon finance market price. Then, taking the carbon futures prices of CER and EUA with maturity called DEC 12 respective of Intercontinental Exchange as samples, empirical results show that: ①the introduced EMD method can resolve the deficiencies effectively that error sequences have strong randomness and interference of adjacent band may cause the outcome that the error sequences can not reflect all of the system dynamic information; ②the trend of corrected predicted values and error predicted values has high consistency, and the predict hysteresis and inflection point error can be solved effectively; ③the model has better prediction precision after comparing to other models commonly used in international carbon finance price prediction. This study proposes a model used in carbon price prediction to provide a new method and reference under the fluctuation characteristics of current international carbon market price.

      Key words carbon finance price prediction; error prediction; empirical mode decomposition; particle swarm optimization; support vector machines

      猜你喜歡
      粒子群算法支持向量機(jī)
      蟻群算法的運(yùn)用及其優(yōu)化分析
      基于改進(jìn)支持向量機(jī)的船舶縱搖預(yù)報模型
      電力市場交易背景下水電站優(yōu)化調(diào)度研究
      基于粒子群算法的產(chǎn)業(yè)技術(shù)創(chuàng)新生態(tài)系統(tǒng)運(yùn)行穩(wěn)定性組合評價研究
      基于SVM的煙草銷售量預(yù)測
      動態(tài)場景中的視覺目標(biāo)識別方法分析
      論提高裝備故障預(yù)測準(zhǔn)確度的方法途徑
      基于熵技術(shù)的公共事業(yè)費最優(yōu)組合預(yù)測
      基于支持向量機(jī)的金融數(shù)據(jù)分析研究
      無線傳感器網(wǎng)絡(luò)聯(lián)盟初始結(jié)構(gòu)生成研究
      双流县| 汉寿县| 八宿县| 丹凤县| 定州市| 搜索| 芮城县| 霸州市| 罗山县| 开远市| 彰化市| 申扎县| 德阳市| 高唐县| 巴彦淖尔市| 临邑县| 若羌县| 防城港市| 衡南县| 祁连县| 乌恰县| 大石桥市| 保山市| 中山市| 三明市| 灯塔市| 额济纳旗| 稷山县| 汉寿县| 正蓝旗| 斗六市| 吴江市| 正宁县| 南昌县| 十堰市| 陈巴尔虎旗| 察雅县| 海宁市| 资中县| 广宁县| 林州市|