胡貴綜述 趙陰環(huán)審校
綜 述
mTOR信號(hào)通路對(duì)T淋巴細(xì)胞調(diào)控的研究進(jìn)展
胡貴綜述 趙陰環(huán)審校
mTOR信號(hào)通路;細(xì)胞代謝;T淋巴細(xì)胞;調(diào)節(jié)
哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)是一種重要的細(xì)胞能量代謝信號(hào)通路。此通路能夠整合來自細(xì)胞內(nèi)外能量、營養(yǎng)及各種生長因子信號(hào),參與調(diào)節(jié)細(xì)胞生長、增殖、代謝和存活等,是細(xì)胞生長的中心調(diào)控因子。雷帕霉素是一種大環(huán)內(nèi)酯類藥物,為此信號(hào)通路的主要抑制劑。經(jīng)抗原識(shí)別,初始T細(xì)胞進(jìn)行快速擴(kuò)增和活化。這種擴(kuò)增所需求的能量是巨大的,且T細(xì)胞激活伴隨著細(xì)胞代謝的變化。而mTOR信號(hào)調(diào)控多種代謝過程,因此其在誘導(dǎo)T細(xì)胞功能和分化中起到關(guān)鍵作用。本文通過具體的分子機(jī)制來討論mTOR在T細(xì)胞增殖、分化及激活中的作用。
在有氧條件下,細(xì)胞通常采用三羧酸(TCA)循環(huán)和線粒體呼吸,因?yàn)榇送緩绞且訟TP形式產(chǎn)生能量最有效的方式。然而,對(duì)于淋巴細(xì)胞情況則相反,淋巴細(xì)胞利用氧化酵解,所謂Warburg效應(yīng),以產(chǎn)生三磷酸腺苷。淋巴細(xì)胞的活化需要明顯增加蛋白質(zhì)、核苷酸和脂類合成[1]。研究人員已經(jīng)提出,盡管糖酵解生成ATP低,但此代謝途徑產(chǎn)生的副產(chǎn)物是生物合成所必需的。mTOR在調(diào)節(jié)這一代謝活動(dòng)中起核心作用 ,使得它成為代謝和免疫功能調(diào)節(jié)的重要紐帶 。在靜息狀態(tài)下,淋巴細(xì)胞采用自噬方式進(jìn)行分解代謝,而mTOR是自噬發(fā)生的重要抑制性通路,且淋巴細(xì)胞的生存需要眾多的轉(zhuǎn)錄調(diào)控因子參與。例如,kruppel-like factor 2(KLF2)和FOXOs通過mTORC2活化被抑制產(chǎn)生,且促進(jìn)抑制蛋白表達(dá)。在活化后,T細(xì)胞切換到糖酵解以獲得能量并合成底物,從而轉(zhuǎn)變?yōu)楹铣纱x。也就是說,從靜息T細(xì)胞到活化T細(xì)胞的過渡需要上調(diào)代謝機(jī)制,涉及參與營養(yǎng)物質(zhì)的攝取和糖酵解[2]。此代謝啟動(dòng)的關(guān)鍵與免疫衍生激活信號(hào)密切相關(guān)。例如,CD28-誘導(dǎo)型PI3K活化誘導(dǎo)Akt活化,反過來又促進(jìn)葡萄糖轉(zhuǎn)運(yùn)表面表達(dá)。此外,在糖酵解和葡萄糖攝取中, 活化的mTORC1通路通過HIF促進(jìn)相關(guān)的蛋白質(zhì)表達(dá),而SREBP的mTORC1依賴性激活導(dǎo)致戊糖磷酸途徑和脂肪酸酸以及甾醇合成關(guān)鍵蛋白上調(diào)。阻斷這些途徑可抑制T細(xì)胞活化。例如,二甲雙胍和AICAR,通過模仿能源枯竭和激活A(yù)MPK(mTORC1的抑制劑)從而抑制IL-2產(chǎn)生并促進(jìn)T細(xì)胞失活[3]。同樣,葡萄糖類似物和mTORC1抑制劑2-脫氧葡萄糖(2-DG)也阻斷T細(xì)胞產(chǎn)生細(xì)胞因子并促使其失活。即使生長因子刺激充足,mTORC1活化仍需氨基酸的存在。細(xì)胞內(nèi)亮氨酸濃度與mTOR通路促進(jìn)Th1細(xì)胞 、Th2細(xì)胞和Th17細(xì)胞產(chǎn)生相關(guān)。即使在 mTORC1活化的存在,亮氨酸拮抗劑N-乙?;?leucineamide 也能抑制mTORC1的活性。而T細(xì)胞的活化可通過APCs進(jìn)行調(diào)節(jié)色氨酸。因此,免疫細(xì)胞代謝抑制可以導(dǎo)致其免疫功能的抑制[4, 5]。
雷帕霉素是一種具有強(qiáng)效免疫抑制作用的低效抗生素。類似FK506,雷帕霉素作用取決于其結(jié)合免疫親和素FKBP12能力。與FK506(環(huán)孢霉素A,其中結(jié)合了免疫親環(huán)素)不同的是雷帕霉素并不抑制鈣調(diào)磷酸酶,因而不抑制由T細(xì)胞受體(TCR)誘導(dǎo)的NF-AT活性。因此,雷帕霉素不能快速抑制許多TCR誘導(dǎo)基因表達(dá)。這包括一些細(xì)胞因子基因如IL-2、IFN-γ和TNF-α,以及所述NF-AT依賴型抑制蛋白質(zhì)基因如CBL-B、GRAIL、DGK-α和轉(zhuǎn)錄因子Egr2、EGR-3等[9]。最初,研究人員認(rèn)為, 雷帕霉素的免疫抑制作用是由于其抑制T細(xì)胞增殖能力。mTOR活性導(dǎo)致細(xì)胞周期抑制劑p27蛋白降解, 以及細(xì)胞周期蛋白D3表達(dá)增加。在不存在增殖時(shí),初始模型顯示,無反應(yīng)性T細(xì)胞是由于TCR的參與,IL-2誘導(dǎo)型T細(xì)胞增生并使其無能。 事實(shí)上,即使在共刺激的情況下,雷帕霉素也能促使T細(xì)胞無反應(yīng)。進(jìn)一步的研究表明 ,不存在mTOR信號(hào)通路抑制時(shí),細(xì)胞周期阻滯在G1期,但不能誘導(dǎo)效應(yīng)細(xì)胞失能。這些研究表明,雷帕霉素促進(jìn)T細(xì)胞失能是通過抑制mTOR,而不是通過抑制增殖[10]。
3.4 mTOR調(diào)節(jié)Th17細(xì)胞 mTOR信號(hào)通路被認(rèn)為是一個(gè)調(diào)節(jié)細(xì)胞周期和細(xì)胞生長的信號(hào)匯聚(convergence),在自噬中起中心調(diào)控點(diǎn)作用[33]。mTOR通路通過影響白細(xì)胞介素(IL-10和IL-1)、血小板源性生長因子(PDGF)及集落刺激因子等分子的穩(wěn)定性來影響Th17炎性細(xì)胞因子表達(dá)[33],TH17通過p38MAPK有絲分裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)途徑致炎[34],體內(nèi)存在動(dòng)態(tài)網(wǎng)絡(luò)控制Th17細(xì)胞[35]。絲氨酸/蘇氨酸激酶Akt (the serine/threonine kinase Akt) 對(duì)調(diào)節(jié)天然型Th17(nTH17)細(xì)胞發(fā)育有重要作用,盡管誘導(dǎo)型Th17(iTH17)的產(chǎn)生需要。Akt和mTORC1-ARNT-HIFa 軸下游通路調(diào)節(jié)nTH17,且nTH17的發(fā)育為mTORC1非依賴性。相反,mTORC2 和 Foxo 蛋白抑制劑對(duì)(nTH17)細(xì)胞發(fā)育重要,而且Akt的不同表型控制TH17亞群產(chǎn)生,刪除Akt2而保留Akt1導(dǎo)致iTH17缺陷[36]。
T淋巴細(xì)胞是人體重要的免疫細(xì)胞,其不僅參與抗病毒、寄生蟲等細(xì)胞免疫,在以抗體介導(dǎo)的體液免疫中仍有重要作用。隨著分子生物學(xué)的研究進(jìn)展,細(xì)胞自噬產(chǎn)生的代謝微環(huán)境對(duì)細(xì)胞本身及對(duì)其他細(xì)胞的影響越來越受重視。mTOR信號(hào)通路在T淋巴細(xì)胞活化、增殖、分化已經(jīng)有了一定的基礎(chǔ)研究,但在具體疾病中,細(xì)胞內(nèi)外環(huán)境差異所產(chǎn)生不同內(nèi)外環(huán)境時(shí),mTOR信號(hào)通路在T淋巴細(xì)胞調(diào)節(jié)中的作用有待于進(jìn)一步深入研究。
1 Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism[J]. Immunity,2010,33(3):301-311.
2 Berger M, Krebs P, Crozat K,et al.An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence[J]. Nature Immunology,2010,11(4):335-343.
3 Powell JD, Pollizzi KN, Heikamp EB,et al.Regulation of immune responses by mTOR[J]. Annual Review of Immunology,2012,30:39.
4 Maciolek JA, Alex Pasternak J, Wilson HL. Metabolism of activated T lymphocytes[J]. Current opinion In Immunology,2014,27:60-74.
5 Zeng H, Chi H. mTOR and lymphocyte metabolism[J]. Current opinion in Immunology,2013,25(3):347-355.
6 Finlay D, Cantrell D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration[J]. Ann N Y Acad Sci,2010,1183(1):149-157.
7 Macintyre AN, Finlay D, Preston G,et al.Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism[J]. Immunity,2011,34(2):224-236.
8 Liu G, Yang K, Burns S,et al.The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and Treg cells[J]. Nature immunology,2010,11(11):1047-1056.
9 Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function[J]. Immunological Reviews. 2012,249(1):43-58.
10 Fowler DH. Rapamycin-resistant effector T-cell therapy[J]. Immunological Reviews,2014,257(1):210-225.
11 Strauss L, Czystowska M, Szajnik M,et al.Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin[J]. PLoS One,2009,4(6):e5994.
12 Gabryová L, Christensen JR, Wu X,et al.Integrated T-cell receptor and costimulatory signals determine TGF-β-dependent differentiation and maintenance of Foxp3+ regulatory T cells[J]. Euro J Immunol,2011,41(5):1242-1248.
13 Daniel C, Wennhold K, Kim H-J,et al.Enhancement of antigen-specific Treg vaccination in vivo[J].Proceed Nation Acad Sci,2010,107(37):16246-16251.
14 Huynh A, Zhang R, Turka LA. Signals and pathways controlling regulatory T cells[J]. Immunological Reviews,2014,258(1):117-131.
15 Zeng H, Yang K, Cloer C,et al.mTORC1 couples immune signals and metabolic programming to establish Treg-cell function[J].Nature,2013,499(7459):485-490.
16 Delgoffe GM, Pollizzi KN, Waickman AT,et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2[J]. Nature Immunology,2011,12(4):295-303.
17 Busch S, Renaud SJ, Schleussner E,et al.mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3[J]. Experimental cell research,2009,315(10):1724-1733.
18 Yu C-R, Mahdi RM, Ebong S,et al.Suppressor of cytokine signaling 3 regulates proliferation and activation of T-helper cells[J].J Biol Chem,2003,278(32):29752-29759.
19 Amarnath S, Flomerfelt FA, Costanzo CM,et al.Rapamycin generates anti-apoptotic human Th1/Tc1 cells via autophagy for induction of xenogeneic GVHD[J]. Autophagy,2010,6(4):523.
21 Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity[J]. Nature Reviews Immunology,2013,13(11):777-789.
22 Klose CS, Kiss EA, Schwierzeck V,et al.A T-bet gradient controls the fate and function of CCR6-ROR[ggr]t+ innate lymphoid cells[J]. Nature,2013,494(7436):261-265.
23 Finlay D, Cantrell DA. Metabolism, migration and memory in cytotoxic T cells[J]. Nature Reviews Immunology,2011,11(2):109-117.
24 Araki K, Turner AP, Shaffer VO,et al.mTOR regulates memory CD8 T-cell differentiation[J]. Nature,2009,460(7251):108-112.
25 Kim EH, Suresh M. Role of PI3K/Akt signaling in memory CD8 T cell differentiation[J].Front Immunol,2013,4:20.
27 Pearce EL, Walsh MC, Cejas PJ,et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism[J]. Nature,2009,460(7251):103-107.
28 Rao RR, Li Q, Odunsi K,et al.The mTOR kinase determines effector versus memory CD8 T cell fate by regulating the expression of transcription factors T-bet and eomesodermin[J]. Immunity,2010,32(1):67-78.
29 Li Q, Rao RR, Araki K,et al. A central role for mTOR kinase in homeostatic proliferation induced CD8 T Cell Memory and Tumor Immunity[J]. Immunity,2011,34(4):541-553.
30 Hand TW, Cui W, Jung YW,et al. Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival[J]. Proc Nat Acad Sci,2010,107(38):16601-16606.
31 Ferrer IR, Wagener ME, Robertson JM,et al.Cutting edge: Rapamycin augments pathogen-specific but not graft-reactive CD8+T cell responses[J].J Immunol,2010,185(4):2004-2008.
32 El Essawy B, Putheti P, Gao W,et al.Rapamycin generates graft-homing murine suppressor CD8+T cells that confer donor-specific graft protection[J]. Cell Transplantation,2011,20:1759.
33 Zielinski CE, Mele F, Aschenbrenner D,et al. Pathogen-induced human TH17 cells produce IFN[ggr]or IL-10 and are regulated by IL-1[bgr][J]. Nature,2012,484(7395):514-518.
34 O'Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation[J]. Nature,2013,493(7432):346-355.
35 Yosef N, Shalek AK, Gaublomme JT,et al.Dynamic regulatory network controlling TH17 cell differentiation[J]. Nature,2013,496(7446):461-468.
36 Kim JS, Sklarz T, Banks LB,et al. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways[J]. Nat Immunol,2013,14(6):611-618.
《疑難病雜志》述評(píng)欄目征稿
本刊為中國科技核心期刊,由國家衛(wèi)生和計(jì)劃生育委員會(huì)主管、中國醫(yī)師協(xié)會(huì)主辦。為了進(jìn)一步提高刊物學(xué)術(shù)水平,真正落實(shí)“攻克疑難病癥,服務(wù)健康事業(yè)”的辦刊宗旨,本刊開辟“述評(píng)”欄目,受到廣大讀者的好評(píng)。為了繼續(xù)辦好“述評(píng)”欄目,特向各專業(yè)的有關(guān)專家約稿。根據(jù)所從事學(xué)科領(lǐng)域中的熱點(diǎn)、焦點(diǎn)、難點(diǎn)問題,對(duì)其發(fā)展現(xiàn)狀、進(jìn)展,進(jìn)行高水平的分析和評(píng)論。采用評(píng)述結(jié)合、以評(píng)為主,述中有評(píng)、評(píng)中有述、由述而評(píng)、由評(píng)馭述的文體。稿件以3 500字左右為宜,突出重點(diǎn),有一定的深度。稿件一經(jīng)錄用,稿酬從優(yōu),并盡快安排發(fā)表。
黑龍江省自然科學(xué)基金重點(diǎn)資助項(xiàng)目(No.ZD-200814-01)
150081 哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院風(fēng)濕免疫科
趙陰環(huán),E-mail:zhaoyinhuan@medmail.com
10.3969 / j.issn.1671-6450.2014.11.036
2014-07-04)