蔣光彪 殷水平 陳勝銘
摘要:工程流體力學(xué)課程具有較強(qiáng)的理論性,涉及的知識(shí)面也較寬廣,給該門課程的教與學(xué)帶來較大的影響。文章針對(duì)工程流體力學(xué)課程的這些特點(diǎn),結(jié)合多年來的教學(xué)實(shí)踐,將CFD軟件和源程序的強(qiáng)大數(shù)值模擬功能,引入工程流體力學(xué)課程輔助教學(xué)中,通過利用CFD軟件和源程序進(jìn)行數(shù)值模擬教學(xué)這一環(huán)節(jié),探討流體力學(xué)課程對(duì)接科研成果的教學(xué)模式。實(shí)踐證明,這一模式獲得了較好的教學(xué)效果。
關(guān)鍵詞:工程流體力學(xué);計(jì)算流體力學(xué);CFD軟件及源程序;教學(xué)研究
中圖分類號(hào):G6420;TU 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):10052909(2015)05015404
一、工程流體力學(xué)與CFD軟件、源程序
計(jì)算流體力學(xué)(Computational Fluid Dynamics,簡稱CFD)軟件通過計(jì)算機(jī)數(shù)值計(jì)算和圖像顯示后處理,對(duì)包含流體流動(dòng)和有熱傳導(dǎo)等相關(guān)物理現(xiàn)象作出系統(tǒng)的分析。目前,CFD 技術(shù)已經(jīng)廣泛應(yīng)用到航空、航天、氣象、船舶、水利、化工、建筑、機(jī)械、汽車、海洋、體育、環(huán)境等領(lǐng)域,取得了令人矚目的成就。在現(xiàn)代科學(xué)技術(shù)高度發(fā)展的今天,計(jì)算技術(shù)已被引入到流體力學(xué)領(lǐng)域,使以前因計(jì)算過于復(fù)雜而影響進(jìn)一步探討的流體力學(xué)問題逐步得以解決,計(jì)算流體力學(xué)已經(jīng)成為研究流體力學(xué)的重要方法[1-3]。常用的CFD計(jì)算軟件有FLUENT 、CFX、Phoenix等。FLUENT 軟件是目前常用的一套高性能的數(shù)值軟件,是專門針對(duì)流體工程數(shù)值計(jì)算與仿真需求而開發(fā)的一種流體數(shù)值仿真軟件。
工程流體力學(xué)課程教學(xué)內(nèi)容主要分為流體靜力學(xué)、流體動(dòng)力學(xué)、相似和量綱分析、管中流動(dòng)、孔口出流和縫隙流動(dòng)等[4]。其中,管中流動(dòng)主要研究圓管中的層流及紊流、管路中的沿程阻力、管路中的局部阻力及管路計(jì)算等,涉及到一系列的概念和理論公式,學(xué)生理解起來有點(diǎn)枯燥、困難[4-5]。通過利用FLUENT軟件和源程序進(jìn)行數(shù)值模擬這一環(huán)節(jié),變枯燥的理論公式計(jì)算為生動(dòng)的計(jì)算機(jī)數(shù)值求解,既提高了學(xué)生的學(xué)習(xí)興趣,同時(shí)也使學(xué)生有了更多的感性認(rèn)識(shí)和理性認(rèn)識(shí),增強(qiáng)學(xué)生解決實(shí)際問題的能力。在流體力學(xué)課程教學(xué)中, 有意識(shí)地穿插計(jì)算數(shù)學(xué)、Fortran語言編程、CFD知識(shí),有助于學(xué)生理解流體力學(xué)公式及方程,
也可以加強(qiáng)學(xué)生對(duì)其他學(xué)科知識(shí)的理解和掌握,達(dá)到多學(xué)科之間的融會(huì)貫通, 觸類旁通。為此,筆者對(duì)科研成果中相關(guān)源源程序、部分開源程序和CFD 軟件在工程流體力學(xué)課程教學(xué)中的應(yīng)用做了一些探索與實(shí)踐。
二、 教學(xué)案例
(一) 圓管中的層流及紊流教學(xué)實(shí)例
在工程流體力學(xué)教學(xué)中,管中流動(dòng)是主要章節(jié)的內(nèi)容,涉及的理論和公式多,不易理解。圓管流動(dòng)有層流和紊流兩種流動(dòng)狀況。雷諾數(shù)是判別流體流動(dòng)狀態(tài)的準(zhǔn)則數(shù)。為加深學(xué)生對(duì)流速分布和壓強(qiáng)分布規(guī)律的理解,在教學(xué)中可安排課外作業(yè),設(shè)置用FLUENT軟件來模擬研究三維圓管的層流和紊流流動(dòng)狀況,作出驗(yàn)證分析。
圖1為圓管流動(dòng)入口和出口邊界截面的流速分布圖(l=2m, d=0.1m)。取流動(dòng)充分發(fā)展部分,離入流邊界x/D=1.6的截面其流速分布如圖2所示??梢钥闯隽魉傺匕霃結(jié)方向成拋物線分布,與書中理論公式相符,如式(1)所示。通過數(shù)值模擬,學(xué)生對(duì)圓管內(nèi)流動(dòng)速度分布有了更深刻的認(rèn)識(shí)。
由圖3可以看出圓管內(nèi)部壓強(qiáng)分布從管口處向延伸方向逐漸減小,可知流速相應(yīng)增大,符合流速大、壓強(qiáng)小的流動(dòng)定律,也符合圓管流動(dòng)壓降的原理。另外從入口處的壓強(qiáng)分布可以看出,在圓管任何截面上,其壓強(qiáng)分布也不是均勻的,也有分層現(xiàn)象。\
圖 3 圓管內(nèi)部壓強(qiáng)分布
圖4為圓管軸線上的速度分布。由圖可以看出,在圓管的軸上,進(jìn)口段流速分布變化較大,從進(jìn)口流速v1=0.005m/s急劇上升到最大流速umax=0.00 848m/s。層流入口段長度有經(jīng)驗(yàn)公式可以算的,即
L≈0.058 dRe (2)
可算得入口段長度約為1.18m,由圖4顯示效果可以看出,流速在離入口1.1m到1.2m之間,即入口段長度約為1.1~1.2m,符合書中理論計(jì)算結(jié)果。
圖 4 圓管軸線上速度分布
圖5為圓管內(nèi)部x軸方向不同截面的流速分布,可看出流速在截面上從入口到出口的變化。水流在圓管內(nèi)部的流速分層很明顯,靠近壁面處流速接近于零。
圖 5 主流方向截面流速分布圖
圖6為圓管紊流充分發(fā)展段某一截面的流速分布圖。從圖中可以看出在紊流充分發(fā)展段,截面流速散點(diǎn)圖最高處幾乎為一條直線,說明圓管內(nèi)大多數(shù)流體流速趨于穩(wěn)定,而是更加平滑。紊流過流斷面的流速對(duì)數(shù)分布比層流的拋物面分布均勻得多,這在理論上符合紊流流速的對(duì)數(shù)分布律,即:
uu=1Klny+C(3)
圖6 Y方向中心軸線的流速分布
(二)管路中的沿程阻力教學(xué)實(shí)例
在流體力學(xué)教學(xué)內(nèi)容管中流動(dòng)一章的教學(xué)實(shí)踐中,筆者利用前期研發(fā)的程序[6]設(shè)置了以半擴(kuò)散角為4o、擴(kuò)散度為3.92的錐形漸擴(kuò)管路內(nèi)的不可壓縮流動(dòng)數(shù)值模擬算例,旨在將對(duì)接科研成果的教學(xué)模式用于輔助工程流體力學(xué)課程教學(xué)實(shí)踐。已知條件:錐形漸擴(kuò)管路前接管直徑為30 mm,后續(xù)管直徑為50 mm,總長度為70 mm。管內(nèi)流動(dòng)介質(zhì)為空氣,進(jìn)口速度為1m/s。 網(wǎng)格模型如圖7所示。
圖7 錐形漸擴(kuò)管路系統(tǒng)內(nèi)流場網(wǎng)格模型
數(shù)值計(jì)算結(jié)果如圖8所示。從圖中可清晰看出,在突然擴(kuò)大段,壓力逐漸增大,表現(xiàn)擴(kuò)壓效果,但中心線上的速度呈下降趨,若擴(kuò)散角增大時(shí),在漸擴(kuò)段會(huì)出現(xiàn)局部回流區(qū),這是造成局部能量損失的重要原因。
圖8 錐形漸擴(kuò)管路內(nèi)壓力場
局部阻力誤差分析:對(duì)于錐形漸擴(kuò)管的局部阻力,可以用包達(dá)定理的形式表示:
hζ=ku1-u222g(4)
其中,k為經(jīng)驗(yàn)系數(shù)。由式可知,錐形漸擴(kuò)管局部阻力損失理論計(jì)算公式為:
hz = ku1 - u2 22g = k1 - A1 A2 2×u21 2g = k1 - A2 A1 2×u22 2g(5)
其中A1為漸擴(kuò)管上游橫截面積,A2為漸擴(kuò)管下游橫截面積(m2),u1為漸擴(kuò)管上游平均流速(理論值),u2為漸擴(kuò)管下游平均流速(理論值)。A1 = πd21 4 = π×124,A2 = πd22 4 = π×224,u1=1 m/s,g=9.8m/s2 。代入(5)式得:
hζ理=0.004 305 m
實(shí)際流體的伯努利方程為[7]:
Z1 + P1 ρg + u21 2g = Z2 + P2 ρg + u22 2g + hf + hζ (6)
將仿真結(jié)果代入上式,其中Z1=Z2=0 P1=-0.03pa,P2=0.4pa,u1=1.06m/s, u2=0.58 m/s, hf=0, 得 hζ模擬=0.00 435m。誤差率為:
η=hζ模-hζ理hζ模×100%
=0.00 435-0.004 3050.00 435×100%=1.03%
(三) 后臺(tái)階流動(dòng)教學(xué)實(shí)例
為讓學(xué)生對(duì)雷諾數(shù)有更進(jìn)一步的感性認(rèn)識(shí),利用開源CFD程序[8]可設(shè)置后臺(tái)階流動(dòng)教學(xué)實(shí)例,比較不同入流Re數(shù)時(shí)臺(tái)階后渦的大小和長度,現(xiàn)選擇四種Re數(shù)工況的計(jì)算結(jié)果進(jìn)行后處理,得到如圖9所示的流線圖。從圖中可以看出,隨Re數(shù)的增加,臺(tái)階后方主渦的大小呈增大趨勢(shì),在Re=1 000時(shí)在上方有次生渦的出現(xiàn)。
圖9 不同雷諾數(shù)下的流線圖
三、 教學(xué)實(shí)踐中的幾點(diǎn)體會(huì)
(一) 理論教學(xué)與數(shù)值實(shí)驗(yàn)教學(xué)的合理利用
在工程流體力學(xué)理論教學(xué)時(shí)可結(jié)合數(shù)值實(shí)驗(yàn)教學(xué)加以輔助,例如在管中流動(dòng)一章教學(xué)時(shí),可以用上述相關(guān)教學(xué)實(shí)例。由于在進(jìn)行課堂演示教學(xué)時(shí),依計(jì)算機(jī)性能及不同問題的規(guī)模難易程度,數(shù)值模擬求解的時(shí)間將有不同,要掌握合理數(shù)值模擬時(shí)間??刹扇∽寣W(xué)生安裝CFD程序及軟件,并要求學(xué)生事先自學(xué)使用方法,嘗試數(shù)值預(yù)測(cè),預(yù)習(xí)理論知識(shí)。然后教師理論教學(xué)時(shí)對(duì)學(xué)生預(yù)測(cè)結(jié)果進(jìn)行抽樣調(diào)查分析,將理論結(jié)果與計(jì)算結(jié)果比較分析。條件許可的話,也可以通過高性能集群提交計(jì)算作業(yè),在較短的時(shí)間內(nèi)獲得計(jì)算結(jié)果。這樣學(xué)生對(duì)復(fù)雜的理論就能有深入的認(rèn)識(shí),同時(shí)也鍛煉了學(xué)生的科研能力。
(二)適當(dāng)安排精選案例教學(xué)
課堂教學(xué)演示案例的選取應(yīng)做到簡單且具有代表性。 案例簡單能夠減少計(jì)算機(jī)的運(yùn)行時(shí)間,使教學(xué)更加緊湊;而有代表性的案例貼近生活或工程實(shí)際,則有利于提高教學(xué)趣味,開闊學(xué)生的視野。由于課堂教學(xué)時(shí)間有限,因此應(yīng)在簡單演示教學(xué)案例的基礎(chǔ)上,精心布置較為復(fù)雜的課外任務(wù)。
(三) 源程序和軟件互補(bǔ)
在數(shù)值模擬教學(xué)中結(jié)合利用軟件和程序。軟件不是萬能的,商用軟件所能解決的問題是已在學(xué)術(shù)界得到充分研究的問題,對(duì)于科學(xué)研究來說,自己編程是必不可少的。一方面,自編程能更好地理解CFD具體實(shí)施過程,對(duì)商用軟件的理解和使用也是有幫助的。另一方面,自編程序還可以更好地對(duì)接科研成果,用于工程流體力學(xué)課程輔助教學(xué)。
四、結(jié) 語
通過上述幾個(gè)數(shù)值模擬實(shí)例可以看出,數(shù)值模擬過程并不太難,但結(jié)果更形象直觀。借助計(jì)算機(jī)輔助手段,在工程流體力學(xué)課堂教學(xué)中,利用CFD軟件及源程序進(jìn)行數(shù)值模擬輔助理論教學(xué), 將理論性較強(qiáng)的內(nèi)容形象化,可以開闊學(xué)生的視野, 激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識(shí), 加深學(xué)生對(duì)基礎(chǔ)理論的理解。此外,通過對(duì)接科研成果,用源程序進(jìn)行數(shù)值實(shí)驗(yàn)教學(xué)還可以培養(yǎng)學(xué)生的動(dòng)手能力和科研能力,豐富數(shù)值實(shí)驗(yàn)教學(xué)內(nèi)容。參考文獻(xiàn):
[1]J.H. Ferziger, M.Peric., Computational Method for Fluid Dynamics[M]. Springer,2002.
[2]張涵信,沈孟育.計(jì)算流體力學(xué)—差分方法的原理和應(yīng)用 [M]. 北京: 國防工業(yè)出版社,2003.
[3]傅德薰,馬延文.計(jì)算流體力學(xué)[M]. 北京: 高等教育出版社,2000.
[4]張也影.流體力學(xué)[M].2版.高等教育出版社,2009.
[5]鄭捷慶,鄒鋒,張軍,等. CFD軟件在工程流體力學(xué)教學(xué)中的應(yīng)用[J]. 中國現(xiàn)代教育裝備, 2007(10):119-121.
[6]何永森,舒適,蔣光彪,等.管路內(nèi)流體數(shù)值計(jì)算與仿真[M]. 湖南 湘潭: 湘潭大學(xué)出版社,2011.
[7]章梓雄,董曾南.粘性流體力學(xué)[M]. 北京: 清華大學(xué)出版社,1998.
[8]URL: ftp://ftp.springer. de/pub/technik/peric/(web Page).