• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      生物沸石薄層覆蓋削減富營(yíng)養(yǎng)化水體磷負(fù)荷*

      2016-09-08 05:47:03周真明黃廷林苑寶玲
      湖泊科學(xué) 2016年4期
      關(guān)鍵詞:古運(yùn)河富營(yíng)養(yǎng)化沸石

      周真明,黃廷林,苑寶玲

      (1:華僑大學(xué)土木工程學(xué)院,廈門 361021)(2:西安建筑科技大學(xué)環(huán)境與市政工程學(xué)院,西安 710055)

      ?

      生物沸石薄層覆蓋削減富營(yíng)養(yǎng)化水體磷負(fù)荷*

      周真明1,2,黃廷林2**,苑寶玲1

      (1:華僑大學(xué)土木工程學(xué)院,廈門 361021)(2:西安建筑科技大學(xué)環(huán)境與市政工程學(xué)院,西安 710055)

      以江蘇揚(yáng)州古運(yùn)河富營(yíng)養(yǎng)化水體為對(duì)象,現(xiàn)場(chǎng)圍隔實(shí)驗(yàn)研究生物沸石薄層覆蓋削減富營(yíng)養(yǎng)化水體磷負(fù)荷可行性,考察生物沸石覆蓋削減上覆水、底泥間隙水和底泥中不同形態(tài)磷的削減效果,討論生物沸石覆蓋修復(fù)過程中不同形態(tài)磷轉(zhuǎn)化機(jī)制. 結(jié)果表明,覆蓋強(qiáng)度為2 kg/m2的生物沸石覆蓋(厚度約2 mm)對(duì)上覆水中總磷的削減率為57.41%,對(duì)上覆水中正磷酸鹽的削減率為60.03%;對(duì)底泥間隙水中正磷酸鹽的削減率為59.80%;對(duì)表層底泥(0~20 cm)中總磷削減率為11.28%,對(duì)無機(jī)磷削減率為11.82%,對(duì)有機(jī)磷削減率為11.11%. 生物沸石覆蓋能將底泥中不穩(wěn)定的無機(jī)磷(可溶性磷、鐵結(jié)合態(tài)磷、鋁結(jié)合態(tài)磷)或少部分較穩(wěn)定的無機(jī)磷(鈣結(jié)合態(tài)磷)轉(zhuǎn)化為穩(wěn)定的無機(jī)磷(包裹磷),說明生物沸石覆蓋不僅能削減液相中磷負(fù)荷,而且能將固相中不穩(wěn)定的無機(jī)磷轉(zhuǎn)化為穩(wěn)定的無機(jī)磷;可見,生物沸石薄層覆蓋能有效削減富營(yíng)養(yǎng)化水體磷負(fù)荷,利用生物沸石薄層覆蓋削減富營(yíng)養(yǎng)化水體磷負(fù)荷是可行的,但需要進(jìn)一步研究富營(yíng)養(yǎng)化水體底泥生物薄層覆蓋修復(fù)過程中不同形態(tài)無機(jī)磷轉(zhuǎn)化機(jī)制.

      底泥;覆蓋;磷;生物沸石;富營(yíng)養(yǎng)化水體;揚(yáng)州古運(yùn)河

      水體富營(yíng)養(yǎng)化是當(dāng)今世界水污染防治面臨的重要難題之一. 隨著我國(guó)工業(yè)化和城市化的發(fā)展,水體富營(yíng)養(yǎng)化趨于嚴(yán)重. 氮和磷是水體富營(yíng)養(yǎng)化的主要限制因子,其中磷被普遍認(rèn)為是關(guān)鍵限制因子,控制水體氮和磷濃度能有效抑制水體富營(yíng)養(yǎng)化[1]. 底泥是水體氮和磷的“源”和“匯”,底泥氮磷釋放是水體氮磷主要來源之一[2-3],因此,削減底泥氮磷釋放能有效控制水體富營(yíng)養(yǎng)化. 底泥原位覆蓋法是當(dāng)今國(guó)內(nèi)外學(xué)者研究熱點(diǎn),并在歐美、日本等國(guó)得到廣泛應(yīng)用[4]. 底泥覆蓋材料從傳統(tǒng)沙子[5]等發(fā)展到現(xiàn)今鐵鹽[6]、鋁鹽[7]、鈣鹽(方解石)[8]、天然沸石或改性沸石[9-11]、各種磷鈍化劑(Z2G1[10]和phoslock?[12])等,這些研究大多是室內(nèi)研究,且主要集中在對(duì)上覆水磷的控制效果及機(jī)制研究,對(duì)底泥和間隙水不同形態(tài)磷削減效果的現(xiàn)場(chǎng)原位實(shí)驗(yàn)研究鮮見報(bào)道.

      圖1 揚(yáng)州古運(yùn)河現(xiàn)場(chǎng)圍隔實(shí)驗(yàn)場(chǎng)地位置Fig.1 Location of the field for enclosure experiment in Yangzhou Ancient Canal

      1 材料與方法

      1.1 實(shí)驗(yàn)場(chǎng)地及裝置

      現(xiàn)場(chǎng)圍隔實(shí)驗(yàn)場(chǎng)地在古運(yùn)河揚(yáng)州城區(qū)三灣段(圖1). 古運(yùn)河揚(yáng)州段是京杭大運(yùn)河最古老的一段,其中古運(yùn)河揚(yáng)州城區(qū)段從灣頭到瓜洲,全長(zhǎng)約30 km,河寬24 m,水深3~5 m. 目前,古運(yùn)河揚(yáng)州市區(qū)段已經(jīng)禁止通航,其功能主要是泄洪;該段大部分時(shí)間水體流動(dòng)緩慢,趨于靜止(除掉從京杭大運(yùn)河引水到古運(yùn)河期間);該段水體富營(yíng)養(yǎng)化嚴(yán)重,時(shí)而出現(xiàn)藻類暴發(fā),主要污染源是城市生活污水、工業(yè)、農(nóng)業(yè)面源污染.

      現(xiàn)場(chǎng)圍隔的實(shí)驗(yàn)裝置是塑料管,管長(zhǎng)6 m、直徑1000 mm,材料是硬聚氯乙烯(U-PVC),類型是雙壁波紋管,管壁截面為雙層結(jié)構(gòu),其內(nèi)壁光滑平整,外壁等距排列的具有梯形中空結(jié)構(gòu)的管材. 圍隔施工過程是:通過吊車將塑料管垂直輕輕放入河中,開始依靠塑料管自身重力在底泥中緩慢下沉,當(dāng)達(dá)到穩(wěn)定時(shí),采用吊車長(zhǎng)臂輕壓塑料管,使其穩(wěn)定地插入底泥,塑料管高出河水常水位0.5 m,其余的長(zhǎng)度切掉. 現(xiàn)場(chǎng)圍隔實(shí)驗(yàn)參數(shù):塑料管插入泥深2.5 m左右,管內(nèi)上覆水深2.0 m左右,上覆水體積約1.57 m3;圍隔實(shí)驗(yàn)共有2根塑料管,1#為對(duì)照系統(tǒng)(無覆蓋);2#為生物沸石覆蓋系統(tǒng)(生物沸石覆蓋強(qiáng)度為2 kg/m2,覆蓋厚度約為2 mm).

      1.2 實(shí)驗(yàn)材料

      實(shí)驗(yàn)所用的沸石為中國(guó)內(nèi)蒙巴彥淖爾的天然沸石,經(jīng)過X射線衍射儀(XRD)檢測(cè),其主要礦物成分為斜發(fā)沸石,伴生礦為正長(zhǎng)石和石英. 沸石表觀顏色為紅褐色,粒徑為1~2 mm,比表面積為42.51 m2/g,孔隙率為36.55%,平均孔徑為6.75 nm,堆積密度為1.01 g/cm3,真實(shí)密度為2.29 g/cm3. 經(jīng)過X射線熒光光譜儀(XRF)測(cè)定,該沸石的主要化學(xué)元素成分為:Si 73.98%;Al 8.99%;Ca 5.07%;K 4.68%;Fe 3.11%;Na 2.13%;Mg 1.51%;還含有Mn、Ti、Zn、Cu、Ni、Co、Sr、Zr、Rb等其它微量元素,合計(jì)0.53%;Si/Al=8.23.

      實(shí)驗(yàn)所用的生物沸石制備過程如下:(1)從污染底泥中分離、篩選出高效菌,本課題組獲得4株高效菌,其中2株高效異養(yǎng)硝化細(xì)菌(均為芽孢桿菌屬,Bacillussp.)和2株高效好氧反硝化菌(均為不動(dòng)桿菌屬,Acinetobactersp.),4株菌的生理生化特征詳見參考文獻(xiàn)[11,13];(2)將4株高效菌液按照等體積比例混合制備混合菌液,再將混合菌液與滅菌的古運(yùn)河原水按照1∶9體積比混合制備混合液;(3)將天然沸石浸置在混合液中,混合液的液面高于沸石層5 cm左右,通過連續(xù)曝氣掛膜法制備生物沸石,制備過程中混合液的DO1 mg/L. 具體詳細(xì)制備過程參考文獻(xiàn)[11,13].

      現(xiàn)場(chǎng)圍隔實(shí)驗(yàn)裝置完成后,實(shí)驗(yàn)系統(tǒng)中上覆水水質(zhì)如表1所示. 由于進(jìn)行現(xiàn)場(chǎng)圍隔時(shí),很難做到每次對(duì)底泥擾動(dòng)程度相同,因此造成對(duì)照系統(tǒng)和生物沸石覆蓋系統(tǒng)中水質(zhì)有些差異.

      表1 揚(yáng)州古運(yùn)河上覆水水質(zhì)

      1.3 實(shí)驗(yàn)方法

      1.4 項(xiàng)目測(cè)試方法

      1.4.1 沸石相關(guān)指標(biāo)測(cè)定方法主要礦物成分采用XRD分析(德國(guó)Bruker-AXS公司,型號(hào)D8 Advance,XRD);主要元素成分采用XRF分析(美國(guó)熱電公司,型號(hào)RL Thermo EDXRF Quant’s,XRF);比表面積采用多點(diǎn)BET法測(cè)定(貝士德儀器科技(北京)有限公司,型號(hào)3H-2000PS2,靜態(tài)容量法、比表面積及孔結(jié)構(gòu)測(cè)定儀);孔隙率和孔徑分布采用BJH法(園筒孔模型)測(cè)定(測(cè)定儀器名稱、生產(chǎn)廠家及型號(hào)同比表面積);真實(shí)密度采用He置換,在真空容量吸附裝置中測(cè)定.

      1.4.3 底泥相關(guān)項(xiàng)目測(cè)試方法底泥TP含量采用高氯酸-硫酸消化—鉬銻抗分光光度法測(cè)定,不同形態(tài)無機(jī)磷(DP、Al-P、Fe-P、Ca-P和RP)采用連續(xù)萃取法測(cè)定[15];本文中的無機(jī)磷為不同形態(tài)無機(jī)磷之和,即IP=DP+Al-P+Fe-P+Ca-P+RP;本文有機(jī)磷為總磷與無機(jī)磷之差.

      1.5 數(shù)據(jù)處理

      上覆水體和底泥中不同形態(tài)磷削減率P按照公式(1)計(jì)算:

      (1)

      式中,CC0和CCi分別為初始和第i次取樣時(shí)生物沸石覆蓋系統(tǒng)上覆水或底泥中不同形態(tài)磷濃度(mg/L或mg/kg);CNC0和CNCi分別為初始和第i次取樣時(shí)對(duì)照系統(tǒng)上覆水或底泥中不同形態(tài)磷濃度(mg/L或mg/kg);i為取樣次數(shù).

      采用方差分析生物沸石覆蓋系統(tǒng)與對(duì)照系統(tǒng)之間削減磷污染物效果的差異.

      2 結(jié)果與討論

      2.1 削減上覆水體中磷負(fù)荷能力

      現(xiàn)場(chǎng)圍隔實(shí)驗(yàn)運(yùn)行過程中,對(duì)照系統(tǒng)和生物沸石覆蓋系統(tǒng)中水溫變化范圍為17.3~30.3℃,系統(tǒng)中水溫變化較大,呈現(xiàn)上升趨勢(shì);水溫升高,會(huì)促進(jìn)底泥中磷的釋放[16]. 對(duì)照系統(tǒng)和生物沸石覆蓋系統(tǒng)中DO濃度變化范圍為0.32~6.46 mg/L,生物覆蓋系統(tǒng)中DO濃度整體來看高于對(duì)照系統(tǒng),水體DO濃度低于2 mg/L,底泥中磷釋放強(qiáng)度明顯增加[13]. 對(duì)照系統(tǒng)和生物沸石覆蓋系統(tǒng)中的pH值變化范圍為7.20~8.12,對(duì)照系統(tǒng)與生物沸石覆蓋系統(tǒng)中pH值變化差異不大(圖2).

      2.2 削減底泥間隙水中磷負(fù)荷能力

      圖2 各系統(tǒng)上覆水中水溫、DO濃度和pH值的變化Fig.2 Changes of water temperature, dissolved oxygen concentration and pH of overlying water in two systems

      圖3 各系統(tǒng)上覆水中TP和-P濃度的變化Fig.3 Changes of TP and -P concentrations of overlying water in two systems

      表2 各系統(tǒng)底泥間隙水-P濃度垂向變化

      2.3 削減底泥中磷負(fù)荷能力

      對(duì)照系統(tǒng)底泥TP、IP和OrP含量均有不同程度減少(表3),說明由于實(shí)驗(yàn)過程中上覆水體水溫逐漸增加促進(jìn)底泥向上覆水體釋放磷污染物,增加上覆水磷負(fù)荷. 與對(duì)照相比,生物沸石覆蓋系統(tǒng)對(duì)表層(0~20 cm)底泥TP削減率為7.64%~13.49%,平均值為11.28%;對(duì)IP削減率為9.24%~13.99%,平均值為11.82%;對(duì)OrP削減率為6.91%~14.81%,平均值為11.11%,說明生物沸石覆蓋對(duì)底泥磷負(fù)荷有一定削減效果.

      對(duì)照系統(tǒng)表層(0~20 cm)底泥中D-P、Al-P和Ca-P垂向含量都有不同程度減少(表3),而Fe-P、RP垂向含量有增加也有減少,但總體有增加趨勢(shì),說明揚(yáng)州古運(yùn)河底泥的不同形態(tài)無機(jī)磷之間轉(zhuǎn)化比較復(fù)雜,需要通過進(jìn)一步研究底泥不同形態(tài)無機(jī)磷轉(zhuǎn)化機(jī)制. 與對(duì)照相比,生物沸石覆蓋系統(tǒng)對(duì)表層(0~20 cm)底泥中D-P、Al-P、Fe-P和Ca-P平均削減率分別為13.7%、15%、18.2%和11.6%,而RP含量提高了1倍左右,說明生物沸石覆蓋能將底泥中不穩(wěn)定的無機(jī)磷(D-P、Al-P和Fe-P)轉(zhuǎn)化為穩(wěn)定狀態(tài)的無機(jī)磷(RP),同時(shí)少部分的比較穩(wěn)定的Ca-P也轉(zhuǎn)化為更為穩(wěn)定的RP,因此,生物沸石覆蓋有利于將底泥中不穩(wěn)定的無機(jī)磷(DP、AL-P、Fe-P和Ca-P)轉(zhuǎn)化為穩(wěn)定的無機(jī)磷(RP),有助于磷的固定.

      2.4 削減磷負(fù)荷作用機(jī)理討論

      1)沸石對(duì)磷的物理吸附. 目前研究報(bào)道的沸石或改性沸石對(duì)磷吸附量大小差異性較大[13,17-20],主要因?yàn)榉惺愋?、初試溶液濃度、沸石投加量、沸石粒徑等因素?duì)沸石吸附量影響比較大,不同的實(shí)驗(yàn)條件下,得到的沸石磷吸附量不同. 初始溶液磷濃度越高,沸石對(duì)磷吸附量越大;沸石投加量越多,對(duì)溶液中磷削減效果越好,但單位質(zhì)量沸石吸附磷量可能存在減少;沸石粒徑越小,對(duì)磷吸附量越大,但沸石粒徑太小,自身重量太輕不利于覆蓋. 因此,在實(shí)際應(yīng)用前,有必要在應(yīng)用對(duì)象現(xiàn)有的條件下進(jìn)行實(shí)驗(yàn)研究,估算出沸石對(duì)磷吸附量、找到沸石最佳投加量及最佳粒徑,指導(dǎo)實(shí)際應(yīng)用.

      表3 各系統(tǒng)底泥中不同形態(tài)磷含量的垂向變化

      3)生物沸石覆蓋能將底泥中不穩(wěn)定的無機(jī)磷(D-P、Fe-P和Al-P)或少部分較穩(wěn)定的無機(jī)磷(Ca-P)轉(zhuǎn)化為穩(wěn)定的無機(jī)磷(RP). 其結(jié)論與其他研究結(jié)果趨于一致,但不同研究條件下,沸石、生物沸石、改性沸石覆蓋修復(fù)過程不同形態(tài)無機(jī)磷轉(zhuǎn)化機(jī)制均存在些不同[5,21-24]. Yin等[25]研究表明,鋁改性硅鎂土覆蓋能將Pmobile(底泥可遷移磷)轉(zhuǎn)化為Ca-P;Yang等[26]研究表明鋯改性沸石覆蓋能將BD-P(碳酸氫鈉提取磷)轉(zhuǎn)為NaOH-P(氫氧化鈉可提取磷)和RP. 可見,污染底泥原位覆蓋修復(fù)過程不同形態(tài)無機(jī)磷轉(zhuǎn)化機(jī)制非常復(fù)雜,影響的因素很多,需要進(jìn)一步研究.

      3 結(jié)論

      2)生物沸石薄層覆蓋能將底泥中不穩(wěn)定的無機(jī)磷(D-P、Fe-P和Al-P)或少部分較穩(wěn)定的無機(jī)磷(Ca-P)轉(zhuǎn)化為穩(wěn)定的無機(jī)磷(RP),說明生物沸石覆蓋不僅能削減液相中磷負(fù)荷,而且能將固相中不穩(wěn)定的無機(jī)磷轉(zhuǎn)化為穩(wěn)定的無機(jī)磷.

      [1]Lewis WM, Wurtsbaugh WA, Paerl HW. Rationale of control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters.EnvironmentalScienceandTechnology, 2011, 45:10300-10305.

      [2]Nilsson P, Jansson M. Hydrodynamic control of nitrogen and phosphorus turnover in an eutrophicated estuary in the Baltic.WaterResearch, 2002, 36: 4616-4626.

      [3]Pan G, Dai LC, Li Letal. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes.EnvironmentalScienceandTechnology, 2012, 46: 5077-5084.

      [4]F?rstner U, Apit SE. Sediment remediation: U. S. focus on capping and monitored natural recovery. Fourth international conference on remediation of contaminated sediment.JournalofSoilsandSediments, 2007, 7: 351-358.

      [5]Kim G, Jung W. Role of sand capping in phosphorus release from sediment.JournalofCivilEngineering, 2010, 14(6): 815-821.

      [6]Li Dapeng, Huang Yong, Li Xiang. Phosphorus adsorption and immobility by sediments with ferric salt addition.EnvironmetalChemistry, 2013, 32(5): 797-802(in Chinese with English abstract). [李大鵬, 黃勇, 李祥. 底泥加入鐵鹽對(duì)水體磷的吸收和固定. 環(huán)境化學(xué), 2013, 32(5): 797-802.]

      [7]Shin EW, Han JS. Phosphate adsorption on aluminium-impregnated mesoporous silicates: Surface structure and behaviour of adsorbents.EnvironmentalScienceandTechnology, 2004, 38: 912-917.

      [8]Berg U, Neumann T, Donnert Detal. Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus.AppliedGeochemistry, 2004, 19(11): 1759-1771.

      [9]Lin JW, Zhan YH, Zhu ZL. Evaluation of sediment capping with active barrier system (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release.ScienceoftheTotalEnvironment, 2011, 409: 638-646.

      [10]Huang TL, Zhou ZM, Xu JLetal. Biozeolite capping for reducing nitrogen load of the ancient in Yangzhou City.WaterScienceandTechnology, 2012, 66 (2): 336-344.

      [11]?zkundakci D, Hamilton DP, Gibbs MM. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion.Hydrobiologia, 2011, 661: 5-20.

      [12]Meis S, Spears BM, Maberly SCetal. Sediment amendment with phoslock in Clatto reservoir (Dundee, UK): Investigating changes in sediment elemental composition and phosphorus fractionation.JournalofEnvironmentalManagement, 2012, 93(1): 185-193.

      [13]Zhou Zhenming. In situ remediation of contaminated sediment using combined biological and physicochemical technology in the urban rivers and lakes[Dissertation]. Xi′an: Xi′an University of Architecture & Technology, 2013(in Chinese with English abstract). [周真明. 城市河湖污染底泥原位生物/物化組合修復(fù)技術(shù)研究[學(xué)位論文]. 西安: 西安建筑科技大學(xué), 2013.]

      [14]State Environmental Protection Administration (SEPA) of China ed. Monitoring and analyzing methods of water and wastewater, 4th ed. Beijing: China Environmental Science Press, 2002(in Chinese). [國(guó)家環(huán)境保護(hù)總局. 水和廢水監(jiān)測(cè)分析方法: 第4版. 北京: 中國(guó)環(huán)境科學(xué)出版社, 2002.]

      [15]Jin Xingcan, Tu Qingying eds. Eutrophication investigation specification of lakes, 2th ed. Beijing: China Environmental Science Press, 1990(in Chinese). [金相燦, 屠清瑛. 湖泊富營(yíng)養(yǎng)化調(diào)查規(guī)范: 第2版. 北京: 中國(guó)環(huán)境科學(xué)出版社, 1990.]

      [16]Ju Zewen, Wei Zhiqin, Dong Hong. Effects of aquatic vegetation rehabilitation on phosphorus in water and sediments of urban landscape waters.JLakeSci, 2015, 27(2): 234-242(in Chinese with English abstract). DOI 10.18307/2015.0206. [琚澤文, 蔚枝沁, 鄧泓. 水生植被恢復(fù)對(duì)城市景觀水體磷濃度及沉積物磷形態(tài)的影響. 湖泊科學(xué), 2015, 27(2): 234-242.]

      [17]Zhang Chuanguang, Zhang Naiming, Yu Xiufang. Effect of denitrification and dephosphorization of thermal modified clinoptilolite for eutrophic water.ChineseJournalofEnvironmentalEngineering, 2013, 7(5): 1665-1670(in Chinese with English abstract). [張傳光, 張乃明, 于秀芳. 熱改性斜發(fā)沸石對(duì)富營(yíng)養(yǎng)化水體的脫氮除磷效果. 環(huán)境工程學(xué)報(bào), 2013, 7(5): 1665-1670.]

      [18]Duan Ning, Wu Yiyuan, Zhang Yinfeng. Adsorption kinetics and thermodynamics of diatomite/zeolite composite adsorbent nitrogen and phosphorus removal.BulletinoftheChineseCeramicSociety, 2014, 33(12): 3151-3158(in Chinese with English abstract). [段寧, 吳依遠(yuǎn), 張銀鳳. 硅藻土/沸石復(fù)合顆粒吸附材料脫氮除磷的吸附動(dòng)力學(xué)及熱力學(xué)分析. 硅酸鹽通報(bào), 2014, 33(12): 3151-3158.]

      [19]Yang Mengjuan, Lin Jianwei, Zhan Yanhuietal. Immobilization of phosphate in Taihu Lake sediment-water systems using aluminum-modified zeolites and zirconium-modified Zeolites as Amendments.ResearchofEnvironmentalSciences, 2014, 27(11): 1351-1359(in Chinese with English abstract). [楊孟娟, 林建偉, 詹艷慧等. 鋁和鋯改性沸石對(duì)太湖底泥-水系統(tǒng)中溶解性磷酸鹽的固定作用. 環(huán)境科學(xué)研究, 2014, 27(11): 1351-1359.][20]Zhang Xiangling, Chen Junjie, Guo Luetal. Analysis on the removal efficiency and mechanisms of phosphorus by modified zeolites substrates coated with ldhs reacted by different metal compounds in laboratory-scale vertical-flow constructed wetlands.EnvironmentalScience, 2014, 35(12): 4553-4559(in Chinese with English abstract). [張翔凌, 陳俊杰, 郭露等. 垂直流人工濕地LDHs覆膜改性沸石基質(zhì)強(qiáng)化除磷效果及其機(jī)制. 環(huán)境科學(xué), 2014, 35(12): 4553-4559.]

      [21]Akhurst D, Jones GB, McConchie DM. The application of sediment capping on phosphorous speciation and mobility in a sub-tropical dunal lake.MarineandFreshwaterResearch, 2004, 55: 715-725.

      [22]Gibbs MM, Hickey CW, ?zkundakci D. Sustainability assessment and comparison of efcacy of four P-inactivation agents for managing internal phosphorus loads in lakes: sediment incubations.Hydrobiologia, 2011, 658: 253-275.

      [23]Xiong WH, Peng J. Laboratory-scale investigation of ferrihydrite-modified diatomite as a phosphorus co-precipitant.Water,AirandSoilPollution, 2011, 215: 645-654.

      [24]Sun Shiquan, Jiang Changbo, Zhao Gangetal. Influencing factors of zeolite in-situ remediation system to control moderately labile organic phosphorus migration and transformation in shallow water.ChinaEnvironmentalScience, 2015, 32(2): 550-557(in Chinese with English abstract). [孫士權(quán), 蔣昌波, 趙剛等. 沸石覆蓋原位控制湖泊內(nèi)源中等活性有機(jī)磷遷移轉(zhuǎn)化. 中國(guó)環(huán)境科學(xué), 2015, 32(2): 550-557.]

      [25]Yin HB, Kong M. Reduction of sediment internal P-loading from eutrophic lakes using thermally modied calcium-rich attapulgite-based thin-layer cap.JournalofEnvironmentalManagement, 2015, 151: 178-185.

      [26]Yang MJ, Lin JW, Zhan YHetal. Immobilization of phosphorus from water and sediment using zirconium-modified zeolites.EnvironmentalScienceandPollutionResearch, 2015, 22: 3606-3619.

      Biozeolite thin-layer capping for reducing the phosphorus load in eutrophic water body

      ZHOU Zhenming1,2, HUANG Tinglin2**& YUAN Baoling1

      (1:CollegeofCivilEngineering,HuaqiaoUniversity,Xiamen361021,P.R.China)(2:SchoolofEnvironmentalandMunicipalEngineering,Xi’anUniversityofArchitecture&Technology,Xi’an710055,P.R.China)

      The feasibility of reducing phosphorus load in eutrophic water body using biozeolite thin-layer capping was examined through a field incubation experiment in Ancient Canal in Yangzhou, Jiangsu Province, China. The reduction efficiency of different phosphorus in overlying water, interstitial water and sediments was estimated. The mechanisms of different phosphorus transportation and transformation in remediation process of sediment using biozeolite thin-layer capping were discussed. The results showed that the reduction efficiency of total phosphorus and orthophosphate in overlying water by biozeolite thin-layer capping of dose rate of 2 kg/m2(the thick of 2 mm) were 57.41% and 60.03%, respectively. The orthophosphate reduction efficiency in interstitial water from sediments was 59.80%. The reduction efficiencies of total phosphorus, inorganic phosphorus and organic phosphorus in surface sediments (0-20 cm) were 11.28%, 11.82% and 11.11%, respectively. Unsteady inorganic phosphorus (e.g. dissolved phosphorus, iron bound phosphorus, aluminium bound phosphorus) and relatively steady inorganic phosphorus (e.g. calcium bound phosphorus) were converted into very steady inorganic phosphorus (e.g. residual phosphorus) using biozeolite thin-layer capping, indicating that biozeolite thin-layer capping could not only reduce phosphorus load in liquid, but also convert unsteady inorganic phosphorus into very steady inorganic phosphorus. Therefore, biozeolite thin-layer capping can reduce phosphorus load in eutrophic water body efficiently, and phosphorus load reduction in eutrophic water body using biozeolite thin-layer capping is feasible. However, it is urgent to understand the mechanisms of different inorganic phosphorus transportation and transformation in remediation process of sediment using biozeolite thin-layer capping.

      Sediment; capping; phosphorus; biozeolite; eutrophic water body; Yangzhou Ancient Canal

      *國(guó)家水體污染控制與治理科技重大專項(xiàng)(2009ZX07317-007-1-2)、國(guó)家自然科學(xué)基金項(xiàng)目(51408243)、福建省自然科學(xué)基金項(xiàng)目(2015J01213)和華僑大學(xué)科研基金項(xiàng)目(14BS216)聯(lián)合資助. 2015-04-15收稿;2015-10-26收修改稿. 周真明(1981~),男,博士,講師;E-mail:zhenming@hqu.edu.cn.

      **通信作者;E-mail:huangtinglin@xauat.edu.cn.

      猜你喜歡
      古運(yùn)河富營(yíng)養(yǎng)化沸石
      基于臨界點(diǎn)的杭州灣水體富營(yíng)養(yǎng)化多年變化研究
      沸石分子篩發(fā)展簡(jiǎn)述
      云南化工(2021年10期)2021-12-21 07:33:24
      5種沸石分子篩的吸附脫碳對(duì)比實(shí)驗(yàn)
      煤氣與熱力(2021年9期)2021-11-06 05:22:56
      東林古運(yùn)河人那些幸福味兒
      東林古運(yùn)河人那些幸福味兒
      洪口水庫近年富營(yíng)養(yǎng)化程度時(shí)間分布的研究
      夜游清名橋古運(yùn)河
      古運(yùn)河旁的江北水城
      旅游世界(2017年11期)2017-11-29 09:57:33
      洞庭湖典型垸內(nèi)溝渠水體富營(yíng)養(yǎng)化評(píng)價(jià)
      富營(yíng)養(yǎng)化藻的特性與水熱液化成油的研究
      龙泉市| 土默特右旗| 德化县| 平昌县| 来凤县| 铜鼓县| 五家渠市| 平江县| 栖霞市| 旺苍县| 永胜县| 博野县| 当涂县| 兴义市| 贵德县| 千阳县| 定兴县| 历史| 石阡县| 贵溪市| 崇明县| 将乐县| 容城县| 三明市| 安庆市| 上林县| 朔州市| 农安县| 南漳县| 木里| 江达县| 旺苍县| 色达县| 山东| 巴林右旗| 武安市| 田林县| 根河市| 应用必备| 绥江县| 崇阳县|