摘 要:《高等代數(shù)》是我校數(shù)統(tǒng)學(xué)院開設(shè)的一門專業(yè)基礎(chǔ)課,它以其抽象的形式和嚴(yán)密的邏輯使得每一個學(xué)習(xí)它的人均能獲得良好的邏輯思維能力、抽象分析能力。本文從分析高等代數(shù)課程特點和當(dāng)前教學(xué)現(xiàn)狀出發(fā),結(jié)合對高等代數(shù)課程的教學(xué)實踐和經(jīng)驗,提出了對提高高等代數(shù)教學(xué)質(zhì)量的一些建議。
關(guān)鍵詞:高等代數(shù) 課程改革 實驗教學(xué) 考核方式
中圖分類號:O151.2 文獻(xiàn)標(biāo)識碼:A 文章編號:1672-1578(2016)12-0012-02
美國著名的數(shù)學(xué)教育家David C Lay曾說:“代數(shù)類課程是最有價值的大學(xué)數(shù)學(xué)課程”,其價值主要體現(xiàn)在兩個方面:一是它的思想和方法;二是它的應(yīng)用價值。大學(xué)數(shù)學(xué)主要開設(shè)的代數(shù)類課程按照專業(yè)不同,主要分為針對數(shù)學(xué)系開設(shè)的專業(yè)基礎(chǔ)課程《高等代數(shù)》和《近世代數(shù)》,與針對非數(shù)學(xué)專業(yè)學(xué)生所開設(shè)的課程《線性代數(shù)》。這些課程是學(xué)習(xí)后續(xù)其他課程的基礎(chǔ),故而一直以來都受到人們的廣泛重視。隨著社會的發(fā)展,對代數(shù)類課程的教學(xué)提出了新的要求。目前各高等院校所采用的代數(shù)類課程內(nèi)容的教學(xué)體系基本上是沿用前蘇聯(lián)的,隨著時代的發(fā)展和變化,已愈發(fā)顯得“不合時宜”。
《高等代數(shù)》是數(shù)學(xué)學(xué)科的一門傳統(tǒng)課程,以其追求內(nèi)容結(jié)構(gòu)的清晰刻畫和作為數(shù)學(xué)應(yīng)用的基礎(chǔ),是大學(xué)數(shù)學(xué)專業(yè)的主干基礎(chǔ)課程。該課程的教學(xué)質(zhì)量的好壞對學(xué)生大學(xué)四年里數(shù)學(xué)素質(zhì)的提高和數(shù)學(xué)能力的培養(yǎng)有著非常深遠(yuǎn)的影響。在課程定位方面,它是數(shù)學(xué)在其它學(xué)科應(yīng)用的必需基礎(chǔ)課程,又是數(shù)學(xué)修養(yǎng)的核心課程。在課程知識體系方面,它以其代數(shù)理論的抽象性、數(shù)學(xué)思想的深邃性吸引著廣大學(xué)生,但是也正因為其理論抽象,也給很多學(xué)生的學(xué)習(xí)造成了不小的困難。
1 教學(xué)現(xiàn)狀
筆者通過近幾年的教學(xué)發(fā)現(xiàn),在教師的教與學(xué)生的學(xué)之間存在著較大的矛盾。主要體現(xiàn)在以下幾個方面:
1.1 教學(xué)方法基本上采取教師講授
高等代數(shù)是一門高度抽象的課程,大多數(shù)學(xué)校的教師在授課時,基本上采取教師講授的填鴨式方法。而教師課堂上講授的東西基本都是純粹的理論、證明、計算過程,幾乎沒有任何實驗,學(xué)生感覺難度大,太抽象,不容易理解,導(dǎo)致學(xué)生對高等代數(shù)的學(xué)習(xí)失去興趣。
1.2 學(xué)生對于所學(xué)知識應(yīng)用難
通過幾年的教學(xué)發(fā)現(xiàn),學(xué)生普遍在課堂上聽得懂,但是下了課自己做書本上的課后習(xí)題卻做不出來。如果遇到與課堂上所授相似的習(xí)題,學(xué)習(xí)認(rèn)真的學(xué)生還可以模仿的做出來,而如果出現(xiàn)沒有講過的新題型,學(xué)生頓時腦子空白,基本的思考都無處下手。
1.3 高等代數(shù)無用論
隨著社會的發(fā)展,人們的生活觀和價值觀隨之變化。很多學(xué)生認(rèn)為學(xué)習(xí)數(shù)學(xué)是沒有用的,他們覺得大學(xué)數(shù)學(xué)距離現(xiàn)實太遙遠(yuǎn),沒有經(jīng)濟(jì),統(tǒng)計等學(xué)科實在,并且很多學(xué)生是逼不得已選擇的數(shù)學(xué)專業(yè)。
通過調(diào)查發(fā)現(xiàn),很大一部分學(xué)生反映對于高等代數(shù)課程,不知道“何以學(xué)”、“為何學(xué)”,感覺離現(xiàn)實太遠(yuǎn),并且學(xué)生在學(xué)習(xí)高等代數(shù)時不僅感覺晦澀難懂,更體會不到數(shù)學(xué)知識作為一個解決問題的工具與現(xiàn)實生產(chǎn)、生活的密切聯(lián)系,因而失去學(xué)習(xí)的興趣和動力。
2 改進(jìn)措施
2.1 轉(zhuǎn)變教育教學(xué)理念
課程教學(xué)作為大學(xué)教學(xué)的基本組織形式,是高校人才培養(yǎng)的主要途徑和中心環(huán)節(jié),承載著高校人才培養(yǎng)的主要任務(wù)。高等代數(shù)是一門高度抽象的課程,主要通過引進(jìn)概念、建立相關(guān)理論,再經(jīng)過嚴(yán)密的邏輯推理而得到相關(guān)方法,因此,講授時容易受到形式邏輯的限制。大多數(shù)教師在教學(xué)過程中,仍按照傳統(tǒng)觀念,滿足于課本知識的傳授,而忽視學(xué)生學(xué)習(xí)能力、創(chuàng)新能力、應(yīng)用能力等綜合素質(zhì)的培養(yǎng),故而需要適當(dāng)?shù)母倪M(jìn)。
教學(xué)內(nèi)容方面,要基于學(xué)生的現(xiàn)有水平與專業(yè)需要,即“學(xué)生需要什么?”而不是“教師現(xiàn)在有什么?”,同時教師在教學(xué)中要注意觀察、收集學(xué)生反應(yīng)并積極做出改進(jìn)回應(yīng),以提高學(xué)生的自主學(xué)習(xí)能力。
教學(xué)方法方面,課堂教學(xué)重點由原來偏重于純粹知識點的灌輸、傳授,轉(zhuǎn)化為偏重于學(xué)生自主學(xué)習(xí)能力的引導(dǎo)、提升。不僅注重培養(yǎng)學(xué)生對于課程具體知識點的汲取和吸收能力,也要注重培養(yǎng)學(xué)生對于課程綜合知識的實際運(yùn)用能力。要充分發(fā)揮教師的主導(dǎo)作用,突出學(xué)生主體地位,強(qiáng)化學(xué)生自主學(xué)習(xí)能力培養(yǎng),提高學(xué)生自學(xué)能力,培養(yǎng)學(xué)生終身學(xué)習(xí)的習(xí)慣;同時,通過學(xué)術(shù)氣氛和學(xué)校生活的熏陶,提高學(xué)生對知識的自主獲取能力??傊?,要使學(xué)生充分掌握學(xué)習(xí)的方法,古人說得好,“授人以魚不如授人以漁”。
教學(xué)目標(biāo)方面,遵從知識傳遞為主轉(zhuǎn)向“知識傳遞——融會貫通——拓展創(chuàng)造”的梯度漸進(jìn)目標(biāo)。“知識傳遞”是課程教學(xué)目標(biāo)的基礎(chǔ),“融會貫通”是課程教學(xué)目標(biāo)的展開,“拓展創(chuàng)造”是課程教學(xué)目標(biāo)的表現(xiàn)。
教學(xué)觀方面,要彰顯三大課程教學(xué)理念。一是教學(xué)學(xué)術(shù)觀。中心任務(wù)是培養(yǎng)學(xué)生主動探究、獨立思考和解決問題的能力。二是教學(xué)民主觀。教師與學(xué)生要在平等的氛圍中進(jìn)行教學(xué)溝通。三是教學(xué)協(xié)同觀。通過教與學(xué)的協(xié)同,促使學(xué)習(xí)更富有效率。
2.2 考核方式的改革
目前,高等代數(shù)課程的考核成績采用“總評成績=平時成績*30%+期末考試成績*70%”形式進(jìn)行計分;期末考試主要采取書面閉卷考試方式進(jìn)行,平時成績則主要依據(jù)上課出勤情況、作業(yè)完成情況和期中考試成績等進(jìn)行評定。這種考核方式一方面形式比較單一,主要是考核課程的基礎(chǔ)知識和基本理論,對學(xué)生應(yīng)用所學(xué)知識分析問題、解決問題的能力和創(chuàng)新能力的考核方面重視不夠;另一方面期末考核多采用閉卷考試,而卷面成績分值在總評中占比較大,使得一些學(xué)生不注重平時的學(xué)習(xí),而是為了考試而學(xué)習(xí),這不利于對所學(xué)知識的掌握,不利于提高教學(xué)質(zhì)量。
鑒于此,考核方式一方面要趨于多元化,通過多種形式進(jìn)行考核,如筆試、回答問題、學(xué)生討論、小論文等;另一方面課程考核方式由結(jié)果轉(zhuǎn)向過程。其具體內(nèi)容是,將考核貫穿于學(xué)生的學(xué)習(xí)始終,將課程考核的重點由對純粹知識點的考核轉(zhuǎn)向?qū)χR與能力并重的考核。通過考核方式的改革,引導(dǎo)學(xué)生自主學(xué)習(xí)。
2.3 引入實驗教學(xué)
實驗教學(xué),就是利用實驗的方法,進(jìn)行發(fā)現(xiàn)和驗證知識的一種教學(xué)方法。它是一種有別于灌輸式教學(xué)的實踐性的教學(xué)方法和過程。它不是以大量的理論灌輸為主。而是代之以簡潔的要點,和注意事項說明,和實際練習(xí)過程進(jìn)行學(xué)習(xí)的。在大學(xué)里,實驗教學(xué)更顯得重要。它是學(xué)習(xí)技能的一個重要環(huán)節(jié)。并通過實驗教學(xué)讓學(xué)生學(xué)會進(jìn)入社會后所必須擁有的處理問題的方法和技巧。實驗教學(xué)是對理論教學(xué)十分重要的補(bǔ)充之一,是教學(xué)中不可或缺的部分,相對于高等代數(shù)理論教學(xué)它有著得天獨厚的優(yōu)勢。
因此,在《高等代數(shù)》課程中開設(shè)實驗課,是非常有必要的,它可以培養(yǎng)學(xué)生參與科學(xué)研究的良好作風(fēng)。實驗課上,學(xué)生在教師的指導(dǎo)下,通過操作計算機(jī),驗證、演示高等代數(shù)的基本概念和基本理論,從而獲取新知識,不同于傳統(tǒng)的數(shù)學(xué)學(xué)習(xí)方式,它強(qiáng)調(diào)以學(xué)生動手為主的數(shù)學(xué)學(xué)習(xí)方式。
高等代數(shù)課程教學(xué)中的實驗環(huán)節(jié),主要是學(xué)生利用已有的計算軟件,對所學(xué)知識在進(jìn)行演練。它也能將理論知識進(jìn)行具體化、形象化,這也符合學(xué)生的認(rèn)知規(guī)律,使學(xué)生更易于理解與掌握。
高等代數(shù)實驗教學(xué)可以采用的計算軟件有很多,像Matlab、Mathematics和Maple軟件等,特別是Matlab。作為科學(xué)工程計算軟件,Matlab 軟件是基于矩陣代數(shù)基礎(chǔ)上開發(fā)的,以矩陣運(yùn)算為主,可以對高等代數(shù)各知識點進(jìn)行驗算,并且它具有強(qiáng)大的繪圖功能,能清楚描繪一至三維圖形,利于將理論結(jié)果進(jìn)行直觀化。
2.4 理論聯(lián)系實際
部分學(xué)生對學(xué)習(xí)數(shù)學(xué)無興趣的原因,除了認(rèn)為學(xué)數(shù)學(xué)辛苦,還認(rèn)為學(xué)數(shù)學(xué)無實際用途。因此,使學(xué)生充分了解數(shù)學(xué)學(xué)科及數(shù)學(xué)教育的地位和作用是非常迫切的。對此,可以將數(shù)學(xué)競賽和數(shù)學(xué)建模的思想滲透到高等代數(shù)的教學(xué)中。
為了使學(xué)生更好地學(xué)習(xí)數(shù)學(xué)基礎(chǔ)課,2009年,由中國數(shù)學(xué)會舉辦了第一屆全國大學(xué)生數(shù)學(xué)競賽,此后每年舉辦一次。中國大學(xué)生數(shù)學(xué)競賽的目的是:激勵大學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,進(jìn)一步推動高等學(xué)校數(shù)學(xué)課程的改革和建設(shè),提高大學(xué)數(shù)學(xué)課程的教學(xué)水平,發(fā)現(xiàn)和選拔數(shù)學(xué)創(chuàng)新人才。其中數(shù)學(xué)專業(yè)類競賽內(nèi)容為大學(xué)本科數(shù)學(xué)專業(yè)基礎(chǔ)課的教學(xué)內(nèi)容,數(shù)學(xué)分析占50%,高等代數(shù)占35%,解析幾何占15%。
另外一個就是數(shù)學(xué)建模。數(shù)學(xué)建模就是通過計算得到的結(jié)果來解釋實際問題,并接受實際的檢驗,來建立數(shù)學(xué)模型的全過程。當(dāng)需要從定量的角度分析和研究一個實際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言作表述來建立數(shù)學(xué)模型。因此,將高等代數(shù)中融入數(shù)學(xué)建模思想是必要的,也是可行的。
3 結(jié)語
數(shù)學(xué)歷來以其高度的抽象性、嚴(yán)密的邏輯性被人們所賞識,卻很少有人把它與美學(xué)聯(lián)系起來,數(shù)學(xué)起源于建筑,正是對美的追求,才產(chǎn)生了數(shù)學(xué)。數(shù)學(xué)的抽象性使很多人對他望而卻步,而這正是數(shù)學(xué)之美。高等代數(shù)的抽象的形式和嚴(yán)密的邏輯使得每一個學(xué)習(xí)它的人均能獲得良好的邏輯思維能力、抽象分析能力,培養(yǎng)他們提出問題、分析問題、解決問題的能力,體會知識的系統(tǒng)性和整體性,有時這往往比學(xué)習(xí)代數(shù)知識本身更重要。
總之,在高等代數(shù)的教學(xué)過程中,要充分調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,貫徹“以學(xué)生發(fā)展為本”的思想,著力培養(yǎng)學(xué)生的創(chuàng)新思維能力和自主學(xué)習(xí)能力,讓學(xué)生為了知識而學(xué)。
參考文獻(xiàn):
[1] 張禾瑞,郝鈵新.高等代數(shù)(第五版)[M].北京:高等教育出版社,2007.
[2] 農(nóng)利偉.基于MATLAB 的高等代數(shù)課程實驗教學(xué)探討[J].計算機(jī)時代,2013(12):67-70.
[3] 丘維聲.代數(shù)系列課程教學(xué)改革的理念和實踐[J].中國大學(xué)教學(xué),2005(6),19-21.
[4] 李曉東.高等代數(shù)課程考核方式改革的探索與實踐[J].黑龍江高教研究,2015(4),153-155.
[5] 鐘祥貴,易忠.探析高等代數(shù)教學(xué)中創(chuàng)新素質(zhì)的培養(yǎng)[J].廣西高教研究,2002(1):58-61.
[6] 韋程東,周桂升,薛婷婷.在高等代數(shù)教學(xué)中融入數(shù)學(xué)建模思想的探索與實踐[J].高教論壇,2008(4):28-30.
作者簡介:官歡歡(1984-),女,貴州財經(jīng)大學(xué),副教授,研究方向為組合數(shù)論。