谷海濤,李松,陳阿娜
1(安徽工程大學(xué) 生物與化學(xué)工程學(xué)院,安徽 蕪湖,241000)2(江蘇諾泰生物制藥股份有限公司,江蘇 連云港,222000)
嵌合突變嗜酸普魯蘭芽孢桿菌普魯蘭酶結(jié)構(gòu)域B對(duì)酶學(xué)性質(zhì)及功能的影響
谷海濤2,李松1*,陳阿娜1*
1(安徽工程大學(xué) 生物與化學(xué)工程學(xué)院,安徽 蕪湖,241000)2(江蘇諾泰生物制藥股份有限公司,江蘇 連云港,222000)
為考察嗜酸普魯蘭芽孢桿菌(Bacillusacidopullulyticus)普魯蘭酶結(jié)構(gòu)域B對(duì)熱穩(wěn)定性及其他酶學(xué)特性和功能的影響,采用嵌合蛋白技術(shù)將B.acidopullulyticus普魯蘭酶的結(jié)構(gòu)域B置換為Geobacillusthermoleovorans普魯蘭酶結(jié)構(gòu)域B。嵌合突變體在60 ℃下的半衰期由34.9 min提高至168.4 min,解折疊一半時(shí)的溫度由65 ℃提高至72 ℃,嵌合突變體較野生型具有更加優(yōu)良的動(dòng)力學(xué)穩(wěn)定性和熱動(dòng)力學(xué)穩(wěn)定性。結(jié)構(gòu)域B置換后,最適pH堿向偏移至pH6.5,最適溫度提高至70 ℃。比酶活及底物特異性實(shí)驗(yàn)結(jié)果顯示,嵌合突變削弱了酶分子與普魯蘭多糖的結(jié)合,轉(zhuǎn)而有利于與糊精及可溶性淀粉的結(jié)合。淀粉糖化結(jié)果顯示,嵌合突變不影響突變體的實(shí)際應(yīng)用性能。上述結(jié)果表明,B.acidopullulyticus普魯蘭酶結(jié)構(gòu)域B對(duì)酶蛋白酶學(xué)性質(zhì)影響顯著,可通過(guò)同源置換構(gòu)建適合于不同淀粉糖化工藝的突變體。
嵌合蛋白;普魯蘭酶;結(jié)構(gòu)域B;酶學(xué)特性;淀粉糖化
普魯蘭酶是一種雙向催化酶,能夠催化普魯蘭多糖、淀粉等多聚葡萄糖類(lèi)底物分支部位的α-1,6-糖苷鍵的水解[1-3],特定條件下也能催化α-1,6-糖苷鍵的反向合成[4-7],因而可應(yīng)用于糖苷化合物分子結(jié)構(gòu)解析、淀粉原料糖化以及功能糖化合物合成等諸多領(lǐng)域[8]。當(dāng)前該酶被廣泛地應(yīng)用于淀粉糖工業(yè)中,成為高品質(zhì)糖漿生產(chǎn)過(guò)程中的關(guān)鍵酶制劑[9-10]。淀粉糖化過(guò)程需要在高溫(60 ℃)下進(jìn)行,糖化時(shí)間一般為48~60 h,普魯蘭酶必須具備在高溫下保持較高酶活性和穩(wěn)定性的能力,篩選或通過(guò)分子改造構(gòu)建耐高溫普魯蘭酶對(duì)于淀粉糖化過(guò)程中降低使用成本和改進(jìn)工藝具有重要意義[11-12]。
嵌合型蛋白質(zhì)(Chimeric protein)是利用基因工程技術(shù),將一個(gè)蛋白質(zhì)分子的部分序列插入或取代另一個(gè)蛋白質(zhì)分子的序列所產(chǎn)生的、兼有兩種原來(lái)蛋白質(zhì)序列和特點(diǎn)的新蛋白質(zhì)[13-14]。近年來(lái)一些研究將嵌合蛋白技術(shù)應(yīng)用于蛋白質(zhì)功能改造上,取得了較好的效果[15-18]。普魯蘭酶隸屬于α-淀粉酶家族,該家族結(jié)構(gòu)域B位于TIM-桶狀結(jié)構(gòu)的第3個(gè)β-折疊和第3個(gè)α-螺旋之間,參與形成活性口袋和TIM-桶壁,在不同酶中的大小和結(jié)構(gòu)差異較大。通過(guò)定點(diǎn)突變和隨機(jī)突變結(jié)果表明該部位在淀粉酶中可能相對(duì)比較脆弱,與酶的總體穩(wěn)定性關(guān)聯(lián)密切,其中部分氨基酸的改變對(duì)酶的熱穩(wěn)定性和pH穩(wěn)定性影響較為顯著[19-20]。
來(lái)源于G.thermoleovorans的I型普魯蘭酶具有極好的耐熱性,在較低濃度的鈣離子(0.1 mmol/L)存在條件下,75 ℃下的半衰期為4 h[21]。G.thermoleovorans普魯蘭酶與B.acidopullulyticus普魯蘭酶(PulA)具有36%的氨基酸同源性,結(jié)構(gòu)域B處的氨基酸同源性更是高達(dá)44.7%。本課題設(shè)計(jì)將PulA的結(jié)構(gòu)域B替換成G.thermoleovorans普魯蘭酶的結(jié)構(gòu)域B(GTPB),構(gòu)建嵌合型蛋白質(zhì)(PulA-GTPB),以提高PulA熱穩(wěn)定性,并考察嵌合突變對(duì)其他酶學(xué)性質(zhì)的影響。
1.1 菌株和質(zhì)粒
E.coliBL21(DE3)和質(zhì)粒pET28a(+)-PulA為本實(shí)驗(yàn)室保存和構(gòu)建,PulA為B.acidopullulyticus普魯蘭酶編碼基因(GeneBank Accession No. Ax203843.1);G.thermoleovorans普魯蘭酶結(jié)構(gòu)域B編碼基因(GeneBank Accession No. AJ315595.1)由Invitrogen(上海)貿(mào)易有限公司合成,并連接于pMD18-T simple vector上。嵌合型質(zhì)粒命名為pET28a(+)-PulA-GTPB
1.2 嵌合型基因的構(gòu)建
嵌合型基因的構(gòu)建采用定點(diǎn)突變?cè)噭┖蠶uik Change Lightning Site-Directed Mutagenesis Kit(Agilent公司,美國(guó))進(jìn)行。為提高實(shí)驗(yàn)成功概率,不進(jìn)行單次結(jié)構(gòu)域置換,并將該過(guò)程分2步進(jìn)行:首先,刪除PulA結(jié)構(gòu)域B基因(1672-1785),引物采用P1和P2;經(jīng)測(cè)序刪除無(wú)誤后,插入G.thermoleovorans普魯蘭酶結(jié)構(gòu)域B基因(1039-1152),采用引物P3和P4進(jìn)行插入序列的擴(kuò)增(表1)。所需分子操作及程序參數(shù)參照試劑盒說(shuō)明進(jìn)行。
表1 插入突變的引物序列
1.3 培養(yǎng)基和培養(yǎng)條件
LB培養(yǎng)基(g/L):胰蛋白胨10.0,酵母粉5.0,NaCl 10.0,pH 7.0。改良型TB培養(yǎng)基(簡(jiǎn)稱(chēng)為M-TB,g/L):胰蛋白胨12.0,酵母粉24.0,甘油10.0,KH2PO42.31,K2HPO4·3H2O 12.55,pH 7.0。
種子培養(yǎng)條件:取-80℃保存的菌種按0.1%的接種量接入LB培養(yǎng)基中,置于搖床上37 ℃,230 r/min培養(yǎng)10 h。發(fā)酵培養(yǎng)條件:取種子培養(yǎng)液按1%的接種量接入M-TB培養(yǎng)基中,置于搖床上37 ℃,230 r/min培養(yǎng)5.5 h(此時(shí)的OD600約為5~6);加入IPTG至終濃度0.1 mmol/L,并下調(diào)誘導(dǎo)溫度至20 ℃,誘導(dǎo)目標(biāo)蛋白表達(dá),誘導(dǎo)時(shí)間20 h[22]。
1.4 生物量的測(cè)定
菌濃(OD600)采用沒(méi)有接種的培養(yǎng)基作空白,將發(fā)酵液用培養(yǎng)基適當(dāng)稀釋(OD600在0.2~0.8),用可見(jiàn)分光光度計(jì)檢測(cè)發(fā)酵液在600 nm處的吸光度值。
1.5 粗酶液制備、酶蛋白純化及定量
取1.0 mL發(fā)酵終點(diǎn)的發(fā)酵液,4 000 r/min,4 ℃離心30 min。將離心所得菌體用10 mmol/L PBS(pH 7.4)稀釋至OD600= 4.0~5.0后,用超聲破碎方法破碎菌體。超聲條件為25%功率,超2 s停2 s,總超聲時(shí)間6 min。將超聲破碎液10 000 r/min,4 ℃離心10 min,離心上清即為粗酶液。
目標(biāo)蛋白C端連接His-tag,純化采用Ni+柱親和層析方法。純化及定量具體操作參見(jiàn)文獻(xiàn)[23-24]。
1.6 酶活分析
普魯蘭酶酶活力測(cè)定采用3,5-二硝基水楊酸方法(簡(jiǎn)稱(chēng)DNS方法)。取適當(dāng)稀釋的酶液0.1 mL加入到1.9 mL 1%的普魯蘭溶液中,置于60 ℃水浴中溫浴10 min,迅速加入3 mL DNS試劑終止酶解反應(yīng),并于沸水浴中煮沸7 min進(jìn)行顯色反應(yīng)。將上述反應(yīng)液置于冰水中冷卻,并加入20 mL蒸餾水,混勻后于540 nm測(cè)定吸光度值。采用pH5.0的醋酸-醋酸鈉配制1%的普魯蘭溶液。1個(gè)酶活力單位定義為上述測(cè)定條件下,每分鐘釋放1 μmol還原糖所需的酶量(還原糖以葡萄糖為標(biāo)準(zhǔn)計(jì))。
1.7 動(dòng)力學(xué)穩(wěn)定性和熱動(dòng)力學(xué)穩(wěn)定性
動(dòng)力學(xué)穩(wěn)定性以半衰期(t1/2)表示,測(cè)定時(shí)將酶液在60 ℃溫浴,每隔一定時(shí)間取樣測(cè)定殘余酶活。以未經(jīng)溫浴的酶液酶活作為100%,其余酶活以相對(duì)百分比表示。以ln (殘余酶活%) 對(duì)溫浴時(shí)間作圖,采用線(xiàn)性回歸方法求得一級(jí)反應(yīng)速率常數(shù)kd,半衰期t1/2= ln2/kd。
熱動(dòng)力學(xué)穩(wěn)定性以蛋白質(zhì)溶解溫度(Tm)表示,測(cè)定采用圓二色譜儀進(jìn)行。解折疊曲線(xiàn)測(cè)定條件:222 nm,溫度變化范圍20~90 ℃,蛋白質(zhì)溶解在5 mmol/L醋酸鈉緩沖液中(pH 5.0),蛋白質(zhì)質(zhì)量濃度控制在50 μg/mL。
其余酶學(xué)特征參數(shù)(最適pH及最適溫度、動(dòng)力學(xué)參數(shù)、底物特異性)及淀粉糖化水解效果測(cè)定方法參見(jiàn)文獻(xiàn)[25]。
2.1 嵌合突變對(duì)菌體生長(zhǎng)和酶催化性能的影響
嵌合蛋白是一種雜合蛋白,有可能兼具兩親本特點(diǎn),也有可能因蛋白序列發(fā)生變化引起蛋白質(zhì)構(gòu)象發(fā)生改變或不能正確折疊而失去原蛋白性能[26-28]。嵌合型質(zhì)粒pET28a(+)-PulA-GTPB構(gòu)建成功后,轉(zhuǎn)化E.coliBL21(DE3)。發(fā)酵終點(diǎn)時(shí),菌體生物量(OD600)與野生型PulA無(wú)明顯差別,表明嵌合型蛋白對(duì)菌體生長(zhǎng)沒(méi)有影響(相對(duì)于野生型)。
然而,酶活測(cè)定結(jié)果表明嵌合突變對(duì)總酶活力的影響顯著,誘導(dǎo)20 h后嵌合型普魯蘭酶的總酶活力僅為野生型普魯蘭酶的47%。比酶活測(cè)定結(jié)果顯示,嵌合型PulA-GTPB的比酶活力是野生型PulA的43%(表2)。SDS-PAGE結(jié)果顯示2者可溶性表達(dá)量相近(圖2)。嵌合型蛋白PulA-GTPB對(duì)普魯蘭多糖的催化性能下降,嵌合突變影響了酶蛋白對(duì)α-1,6糖苷鍵的水解功能。
表2 野生型普魯蘭酶及其嵌合突變體總酶活及比酶活
M-蛋白質(zhì)分子量(kDa)標(biāo)準(zhǔn);樣品為單位菌體細(xì)胞破碎上清;箭頭所指之處為目標(biāo)蛋白所在位置;1-PulA-GTPB;2-PulA圖2 野生型及其嵌合突變體SDS-PAGE分析Fig.2 SDS-PAGE analysis of PulA and PulA-GTPB
2.2 嵌合突變對(duì)熱穩(wěn)定性的影響
半衰期實(shí)驗(yàn)結(jié)果顯示60 ℃時(shí)嵌合突變體及野生型普魯蘭酶酶活損失一半所需的時(shí)間分別為34.9 min和168.4 min,嵌合突變體半衰期是野生型普魯蘭酶的4.8倍。60 ℃溫浴30 min后嵌合突變體能保留初始酶活的95%,而野生型在同等條件下的殘余酶活僅為55%(圖3-A)。
通過(guò)研究嵌合突變體及野生型普魯蘭酶的溶解溫度,進(jìn)一步研究?jī)烧咴跓釀?dòng)力學(xué)穩(wěn)定性(Thermodynamic stability)上的差異。Tm實(shí)驗(yàn)結(jié)果顯示嵌合突變體及野生型普魯蘭酶解折疊一半時(shí)的溫度分別為72.0℃和65.0℃(圖3-B)。結(jié)果表明突嵌合變體具有比野生型更加優(yōu)良的熱穩(wěn)定性。
(A)t1/2;(B) Tm圖3 野生型及其嵌合突變體的半衰期及溶解溫度Fig.3 The t1/2 and Tm of PulA and PulA-GTPB
2.3 嵌合突變對(duì)最適pH及最適溫度的影響
野生型普魯蘭酶最適pH為pH5.0,嵌合突變體最適pH為pH6.5,G.thermoleovorans普魯蘭酶結(jié)構(gòu)域B使得嵌合酶最適pH堿向偏移。表明結(jié)構(gòu)域B與酶的最適pH及酸堿穩(wěn)定性密切相關(guān)(圖4-A)。嵌合突變體的最適溫度為70 ℃,較野生型提高了10 ℃。反應(yīng)溫度為60 ℃時(shí),相對(duì)酶活為70 ℃時(shí)的85%。反應(yīng)溫度高于60 ℃時(shí),仍能保持較高的相對(duì)酶活。如在80 ℃時(shí),嵌合突變體的相對(duì)酶活為78%,而野生型普魯蘭酶的相對(duì)酶活僅為34%。表明嵌合突變體比野生型具有較好的耐熱性(圖4-B)。
(A) 最適 pH;(B) 最適溫度圖4 野生型及其嵌合突變體的最適pH及最適溫度Fig.4 The optimal pH and optimal temperature of PulA and PulA-GTPB
2.4 嵌合突變對(duì)酶促動(dòng)力學(xué)參數(shù)的影響
動(dòng)力學(xué)參數(shù)的測(cè)定在60 ℃,pH 5.0下進(jìn)行,以普魯蘭多糖為底物,測(cè)定純酶在不同底物質(zhì)量濃度下的初始反應(yīng)速率。通過(guò)非線(xiàn)性回歸方法求得Vmax和Km,kcat=Vmax/[E],其中[E]是酶濃度[29]。與突變前相比,嵌合突變體的Km值上升明顯,嵌合酶對(duì)普魯蘭多糖底物的親和力(Km)下降,催化效率僅有野生型的51%(表3)。
表3 野生型普魯蘭酶及其突變體動(dòng)力學(xué)參數(shù)
2.5 嵌合突變對(duì)底物特異性的影響
以普魯蘭多糖、糊精、可溶性淀粉和牡蠣糖原為底物,對(duì)比考察嵌合突變對(duì)底物特異性的影響。用于測(cè)定底物特異性的底物濃度為0.25%。以普魯蘭多糖為底物時(shí)的酶活計(jì)為100%,其余酶活以相對(duì)百分比表示。實(shí)驗(yàn)結(jié)果顯示,PulA-GTPB和PulA的最適底物均是普魯蘭多糖,且對(duì)高度分支的糖原沒(méi)有水解活性。然而,PulA-GTPB對(duì)糊精和可溶性淀粉的水解活性較野生型PulA有明顯上升(表4)。結(jié)合比酶活測(cè)定結(jié)果(嵌合突變體對(duì)普魯蘭多糖的催化性能下降明顯)進(jìn)一步證實(shí)GTPB削弱了酶分子與普魯蘭多糖的結(jié)合,轉(zhuǎn)而有利于酶分子與糊精、可溶性淀粉等底物結(jié)合。
表4 野生型普魯蘭酶及其嵌合突變體底物特異性
注:-表示酶活在檢測(cè)線(xiàn)以下。
2.6 嵌合突變對(duì)淀粉糖化應(yīng)用性能的影響
為考察嵌合突變對(duì)淀粉糖化實(shí)際應(yīng)用效果的影響,以干基濃度為30%的玉米淀粉乳(按15L配制)為底物,經(jīng)高溫酸性α-淀粉酶液化后,再加入糖化酶(120 U/g干基)和普魯蘭酶進(jìn)行糖化。由于嵌合突變體PulA-GTPB的比酶活只有野生型PulA的43%,當(dāng)按照0.5 U/g干基添加普魯蘭酶時(shí),突變體的添加量是野生型的2.3倍。以只添加糖化酶的實(shí)驗(yàn)組作為對(duì)照,測(cè)定各組料液中DE值(還原性糖以葡萄糖計(jì))。糖化終點(diǎn)時(shí),對(duì)照、野生型PulA和嵌合突變體PulA-GTPB糖化值分別為92.1%、93.6%和95.2%,復(fù)合酶糖化效果比只添加糖化酶的糖化效果好,嵌合突變體比對(duì)照和野生型糖化效果好。
等量嵌合突變體對(duì)普魯蘭的催化活力雖只有野生型的43%,但是對(duì)糊精的催化能力較野生型有顯著提升(表5),因而實(shí)驗(yàn)采用固定添加普魯蘭酶酶活單位的方式添加嵌合突變體,最終突變體的糖化效果優(yōu)于野生型。為進(jìn)一步降低應(yīng)用成本,采用固定添加量的方式添加普魯蘭酶:野生型仍按0.5 U/g干基添加,嵌合型的理論添加量為 (0.5×43%) U/g干基。糖化終點(diǎn)時(shí)嵌合突變體PulA-GTPB糖化值為93.3%,與野生型相比無(wú)本質(zhì)差異。該結(jié)果表明,嵌合突變不影響淀粉糖化實(shí)際應(yīng)用性能(表5)。
表5 野生型普魯蘭酶及其突變體糖化效果
注:DE1固定添加酶活;DE2固定添加重量
采用嵌合蛋白技術(shù)將B.acidopullulyticus普魯蘭酶結(jié)構(gòu)域B置換為G.thermoleovorans普魯蘭酶結(jié)構(gòu)域B,研究嵌合突變對(duì)B.acidopullulyticus普魯蘭酶熱穩(wěn)定性及其他酶學(xué)性質(zhì)的影響。得出以下結(jié)論:與野生型相比,嵌合突變體的熱穩(wěn)定性大幅提高,較好地彌補(bǔ)了比酶活下降的不足,因而不影響淀粉糖化應(yīng)用性能。此外,嵌合突變對(duì)最適pH、最適溫度、酶促動(dòng)力學(xué)參數(shù)及底物特異性亦有顯著影響。上述結(jié)果表明B.acidopullulyticus普魯蘭酶結(jié)構(gòu)域B對(duì)酶蛋白酶學(xué)性質(zhì)影響顯著,研究結(jié)果可為普魯蘭酶定向分子改造提供依據(jù),相關(guān)機(jī)理有待進(jìn)一步研究。
[1] SINGH R S,SAINI G K,KENNEDY J F.Continuous hydrolysis of pullulan using covalently immobilized pullulanase in a packed bed reactor[J].Carbohydrate Polymers,2011,83(2):672-675.
[2] ALAGOZ D,YILDIRIM D,GUVENMEZ H K,et al.Covalent immobilization and characterization of a novel pullulanase fromFontibacillussp. Strain DSHK 107 onto Florisil?and nano-silica for pullulan hydrolysis[J].Applied Biochemistry and Biotechnology,2016,179(7):1 262-1 274.
[3] LI Shi-fang, XU Jian-yong, BAO Yun-juanet al.Structure and sequence analysis-based engineering of pullulanase fromAnoxybacillussp. LM18-11 for improved thermostability[J].Journal of Biotechnology,2015,210: 8-14.
[4] KITAHATAA S,TANIMOTO T,IKUTA A,et al.Synthesis of novel heterobranched beta-cyclodextrins from 4(2)-O-beta-D-galactosyl- maltose and β-cyclodextrin by the reverse action of pullulanase, and isolation and characterization of the products[J].Bioscience, Biotechnology and Biochemistry,2000,64:1 223-1 229.
[5] YIM D K,PARK Y H.Production of branched cyclodextrins by reverse reaction of microbial debranching enzymes[J].Starch-Starke, 1997,49:75-78.
[6] YU Bo,TIAN Yao-qi,YANG Na,et al.A study on the inhibition mechanism of β-cyclodextrin on pullulanase[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2011,70(1):161-165.
[7] GOURLAY L J, SANTI I, PEZZICOLI A,et al.Group B streptococcus pullulanase crystal structures in the context of a novel strategy for vaccine development[J].Journal of Bacteriology,2009,191(11):3 544-3 552.
[8] TAKIZAWA N,MUROOKA Y.Cloning of the pullulanase gene and overproduction of pullulanase inEscherichiacoliandKlebsiellaaerogenes[J].Applied and Environmental Microbiology,1985,49(2):294-298.
[9] NIE Yao,YAN Wei,XU Yan,et al.High-level expression ofBacillusnaganoensispullulanase from recombinantEscherichiacoliwith auto-induction: effect of lacoperator[J].PLoS One,2013,8(10): e78416.
[10] TALEKAR S,PANDHARBALE A,LADOLE M,et al.Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs):a tri-enzyme biocatalyst with one pot starch hydrolytic activity[J]. Bioresource Technology,2013,147: 269-275.
[11] SVENDSEN A.Pullulanase variants and methods for preparing such variants with predetermined properties:7906306[P]. 2011-03-15.
[12] DUAN Xu-guo,CHEN Jian,WU Jing.Improving the thermostability and catalytic efficiency ofBacillusderamificansPullulanase by site-directed mutagenesis[J].Applied and Environmental Microbiology,2013,79(13):4 072-4 077.
[13] PARASHAR D,SATYANARAYANA T.A chimeric α-amylase engineered fromBacillusacidicolaandGeobacillusthermoleovoranswith improved thermostability and catalytic efficiency[J].Journal of Industrial Microbiology & Biotechnology,2016,43(4):473-484.
[14] SEO D H,JUNG J H,JUNG D H,et al.An unusual chimeric amylosucrase generated by domain-swapping mutagenesis[J].Enzyme and Microbial Technology,2016, 86: 7-16.
[15] CHANG C J, LEE C C, CHAN Y T,et al.Exploring the mechanism responsible for cellulase thermostability by structure-guided recombination[J]. PLoS One,2016,11(3):e0147485.
[16] WEN Guo-yuan,HU Xiao,ZHAO Kang,et al.Molecular basis for the thermostability of Newcastle disease virus[J].Scientific Reports, 2016,6:22492.
[17] SWIFT S M,SEAL B S,GARRISH J K,et al.A thermophilic phage endolysin fusion to a clostridium perfringens-specific cell wall binding domain creates an anti-clostridium antimicrobial with improved thermostability[J].Viruses,2015,7(6):3 019-3 034.
[18] CRUM M A,PARK J M,SEWELL B T,et al.C-terminal hybrid mutant ofBacilluspumiluscyanide dihydratase dramatically enhances thermal stability and pH tolerance by reinforcing oligomerization[J].Journal of Applied Microbiology,2015,118(4):881-889.
[19] STEFAN J.α-Amylase family: molecular biology and evolution[J].Progress in Biophysics & Molecular Biology,1997,67(1):67-97.
[20] WOODLEY J M.Protein engineering of enzymes for process applications[J].Current Opinion in Chemical Biology,2013,17(2): 310-316.
[21] ZOUARI AYADI D,BEN ALI M,JEMLI S,et al.Heterologous expression, secretion and characterization of theGeobacillusthermoleovoransUS105 type I pullulanase[J].Applied Microbiology and Biotechnology,2008,78(3):473-481.
[22] CHEN A-na, SUN Yang, ZHANG Wei, et al. Downsizing a pullulanase to a small molecule with improved soluble expression and extracellular secretion efficiency inEscherichiacoli[J].Microbial Cell Factories, 2016, 15(1):9.
[23] CHEN A-na, LIYa-mei, LIUXiu-xia, et al. Soluble expression of pullulanase fromBacillusacidopullulyticusinEscherichiacoliby tightly controlling basal expression[J].Journal of Industrial Microbiology & Biotechnology, 2014, 41(12): 1803-1810.
[24] CHEN A-na,LI Ya-mei,NIEJian-qi et al.Protein engineering ofBacillusacidopullulyticuspullulanase for enhanced thermostability using in silico data driven rational design methods[J].Enzyme and Microbial Technology,2015,78: 74-83.
[25] 陳阿娜,劉秀霞,戴曉峰,等.N端截短對(duì)嗜酸普魯蘭芽孢桿菌普魯蘭酶酶學(xué)特性及功能的影響[J].生物工程學(xué)報(bào),2016,32(3): 355-364.
[26] TOSSAVAINEN H,KUKKURAINEN S,MAATTA J A,et al.Chimeric avidin——NMR structure and dynamics of a 56 kDa homotetrameric thermostable protein[J].PLoS One,2014,9(6): e100564.
[27] SASAJIMA Y,KOHAMA Y,KOJIMA-MISAIZU M,et al.Simultaneous retention of thermostability and specific activity in chimeric human alkaline phosphatases[J].Molecular Biotechnology,2014,56(10):953-961.
[28] HANRui-zi,LI Jiang-hua,SHIN H D,et al.Carbohydrate-binding module-cyclodextringlycosyl transferase fusion enables efficient synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid with soluble starch as the glycosyl donor[J].Applied and Environmental Microbiology,2013,79(10):3 234-3 240.
[29] MALLE D,ITOH T,HASHIMOTO W,et al.Overexpression, purification and preliminary X-ray analysis of pullulanase fromBacillussubtilisstrain 168[J].Acta Crystallographica Section F-Structural Biologyand Crystallization Communications,2006,62(4): 381-384.
Effect of chimeric mutation ofBacillusacidopullulyticuspullulanase domain B on its enzymatic characteristics and functions
GU Hai-tao2,LI Song1*,CHEN A-na1*
1(School of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China)2(Sinopep Jiangsu Inc., Lianyungang 222000, China)
Chimeric protein technology was used to replace domain B ofBacillusacidopullulyticuspullulanase with domain B fromGeobacillusthermoleovoranspullulanase to investigate the effects of chimeric mutation on thermostability, enzymatic characteristics, and function. The results showed that the half-life of chimeric mutant at 60 ℃ was increased from 34.9 min to 168.4min, and its melting temperature increased from 65 ℃ to 72 ℃. Furthermore, chimeric mutant had more excellent kinetic stability and thermodynamic stability compared to wild-type enzyme. The optimal pH and optimal temperature were 6.5 and 70 ℃, respectively after domain B replacement. Specific activity and substrate specificity results showed that the chimeric mutation weakened the combination of enzyme with pullulan, increased the combination of enzyme with dextrin and soluble starch. Starch saccharification results showed that the chimeric mutation did not affect the practical application. These results demonstrated thatB.acidopullulyticuspullulanase domain B had significant impact on enzyme properties. The mutants suitable for different starch saccharification processes can be constructed by homologous replacement.
chimeric protein;pullulanase; domain B; enzyme properties; starch saccharification
10.13995/j.cnki.11-1802/ts.201705008
本科生(李松副教授、陳阿娜副教授為本文通訊作者,E-mail:lisong821123@126.com;chenanan@ahpu.edu.cn)。
安徽省自然科學(xué)基金青年基金項(xiàng)目(No. 1708085QC63;No. 1408085QC61)國(guó)家自然科學(xué)基金項(xiàng)目(No. 31401630)
2016-09-21,改回日期:2016-12-28