• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Classification of Phase Portraits of Z2- Equivariant Planar Hamiltonian Vector Field of Degree 7 (Ⅶ)

      2017-08-30 23:27:38YanmeiLi
      關(guān)鍵詞:向量場(chǎng)哈密頓出峰

      Yanmei Li

      (School of Mathematics and Statistics , Chuxiong Normal University, Yunnan Chuxiong, 675000, China)

      Classification of Phase Portraits ofZ2- Equivariant Planar Hamiltonian Vector Field of Degree 7 (Ⅶ)

      Yanmei Li

      (School of Mathematics and Statistics , Chuxiong Normal University, Yunnan Chuxiong, 675000, China)

      In this paper, by the use of the method of qualitative analysis of differential equations, 25 phase portraits of a newZ2- equivariant planar Hamiltonian vector fields of degree 7 are obtained and the parameter space is classified.

      Hamiltonian vector field of degree 7;Z2- equivariant property; singular point; phase portrait

      In[1―7], the phase portraits of planar Hamiltonian vector fields of degree 7 withZq- equivariant property have been discussed, but there are still many vector fields deserving to be studied. In this paper, we will deliberate a new planar Hamiltonian vector fields as follows and get 25 phase portraits

      (1)

      wherekis a parameter with k>1.

      1 Qualitative Analysis of the Singular Points

      The Jacobian of this system is

      in which

      Discussing the Jacobians of these singular points, we get the following result:

      Theorem 1 The singular points (0,0),(±1.2,0),(0,m),(±1,1),(±1.3,1),(±1.2,m),(±1,n)and (±1.3,n) are centers, and the others are saddle points.

      2 Phase Portraits of the System (1)

      The Hamiltonian of the system is

      Itiseasytoget

      H(±1,0)=-0.3892333, H(±1.2,0)=-0.385897,H(±1.3,0)=-0.3866327 ,

      H(0,1)=-(10.8k2-5.6k+1)/24, H(0,m)=(2.6k4-8.8k3)/24 ,

      H(0,n)=0.0486k4-0.324k3,

      H(0,m)-H(0,1)=(k-1)3(2.6k-1)/24, H(0,m)-H(0,n)=0.512k3(1.4k-1)/12,

      H(0,1)-H(0,n)=(1.8k-1)3(1-0.2k)/24,

      andH(±1,0)

      ComparingtheHamiltoniansofthesingularpoints,weobtainthefollowingresults.

      Theorem2Thereexist25phaseportraitsofsystem(1)showninFig(1),andeveryoneofthemcorrespondstothevalueofkinthefollowingscopes: (1)1

      (7)1.17555

      (11)1.320463.38523.

      ProofBecausethetrainofthoughtissimilar,weonlyprovethefirsttencases.

      WeseparatelydenoteH(0,0),H(±1,0),H(±1.2,0),H(±1.3,0),H(0,1),H(0,m),H(0,n),H(±1,1),H(±1,m),H(±1,n),H(±1.2,1),H(±1.2,m),H(±1.2,n),H(±1.3,1),H(±1.3,m)andH(±1.3,n)byh00,h10,hb0,hc0,h01,h0m,h0n,h11,h1m,h1n,hb1,hbm,hbn,hc1,hcmandhcm.

      Obviouslyhxy=hx0+h0y, h105, h01

      (1)When1

      h1n

      andthephaseportraitisshownasFig.1(1).

      (2)Whenk=1.12831,wehavehc0=h0n,andtheHamiltoniansofthesingularpointssatisfytheinequalities

      對(duì)于苯、甲苯、環(huán)己烷和甲基環(huán)己烷等組分的定量分析,由于在色譜圖中,苯和環(huán)己烷出峰的保留時(shí)間在n-C6和n-C7之間,甲苯和甲基環(huán)己烷在n-C7和n-C8之間出峰,對(duì)這幾個(gè)組分的定量可采用式(6)計(jì)算。

      h1n

      sothephaseportraitisshownasFig.1(2).

      (3)When1.12831

      h1n

      sothephaseportraitisshownasFig.1(3).

      (4)Whenk=1.13101,wegeth10=h0n,andtheHamiltoniansofthesingularpointssatisfytheinequalities

      h1n

      sothephaseportraitisshownasFig.1(4).

      (5)When1.13101

      h1n

      h1n

      h1n

      h1n

      sothephaseportraitisshownasFig.1(5).

      (6)Whenk=1.17555,weobtainh10=h01,andtheHamiltoniansofthesingularpointssatisfytheinequalities

      h1n

      sothephaseportraitisshownasFig.1(6).

      (7)When1.17555

      h1n

      sothephaseportraitisshownasFig.1(7).

      (8)Whenk=1.2025,weobtainhb1=hcm,andtheHamiltoniansofthesingularpointssatisfytheinequalities

      h1n

      sothephaseportraitofthesystem(1)isshownasFig.1(8).

      (9)If1.2025

      h1n

      sothephaseportraitofthesystem(1)isshownasFig.1(9).

      (10)Ifk=1.32046,theHamiltoniansofthesingularpointssatisfytheinequalities

      h1n

      sothephaseportraitofthesystem(1)isshownasFig.1(10).

      Fig.1 The phase portraits of system (1)

      [1]YanmeiLi,ZhaoHu.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅰ)[J].JournalofChuxiongNormalUniversity, 2012, 27(6):1-5.

      [2]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅱ)[J].JournalofChuxiongNormalUniversity, 2012, 27(9):1-5.

      [3]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅲ)[J].JournalofChuxiongNormalUniversity, 2013, 28(9):1-4.

      [4]YanmeiLi.GlobalPhasePortraitsandClassificationofZ2-EquivariantPlanarHamiltonianVectorFieldsofDegree7withinfinitesingularpoints(Ⅰ)[J].JournalofChuxiongNormalUniversity, 2014, 29(3):1-4.

      [5]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅳ) [J].JournalofChuxiongNormalUniversity, 2014, 29(9):1-5.

      [6]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅴ) [J].JournalofChuxiongNormalUniversity, 2015, 30(6):1-4.

      [7]YanmeiLi.ClassificationofPhasePortraitsofZ2-EquivariantPlanarHamiltonianVectorFieldofDegree7(Ⅵ) [J].JournalofChuxiongNormalUniversity, 2015, 30(9):1-4.

      (責(zé)任編輯 司民真)

      楚雄師范學(xué)院國(guó)家自然科學(xué)基金孵化項(xiàng)目“具有Z-q等變量性質(zhì)的平面七次哈密頓向量場(chǎng)的相圖分類研究”。

      2017 - 03 - 25

      李艷梅(1966―),女,楚雄師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院教授,研究方向:非線性微分方程。

      O175.29

      A

      1671 - 7406(2017)03 - 0001 - 04

      具有Z2-等變性質(zhì)的平面七次哈密頓向量場(chǎng)的相圖分類(Ⅶ)

      李艷梅

      (楚雄師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,云南 楚雄 675000)

      根據(jù)微分方程定性理論,本文得到了一類新的具有Z2-等變性質(zhì)的七次平面哈密頓向量場(chǎng)的25個(gè)相圖,并對(duì)參數(shù)空間進(jìn)行了劃分。

      七次哈密頓向量場(chǎng);Z2-等變性質(zhì);奇點(diǎn);相圖

      猜你喜歡
      向量場(chǎng)哈密頓出峰
      關(guān)于共形向量場(chǎng)的Ricci平均值及應(yīng)用
      氣相色譜永久性氣體分析應(yīng)用實(shí)例
      山西化工(2020年6期)2021-01-10 03:16:40
      空間型上的近Yamabe孤立子
      AKNS系統(tǒng)的對(duì)稱約束及其哈密頓結(jié)構(gòu)
      一類四階離散哈密頓系統(tǒng)周期解的存在性
      H?rmander 向量場(chǎng)上散度型拋物方程弱解的Orlicz估計(jì)
      一類新的離散雙哈密頓系統(tǒng)及其二元非線性可積分解
      分?jǐn)?shù)階超Yang族及其超哈密頓結(jié)構(gòu)
      由H?rmander向量場(chǎng)構(gòu)成的拋物方程的正則性
      高效液相色譜法測(cè)定酚類化合物
      西乌| 小金县| 大埔县| 白朗县| 逊克县| 社旗县| 泉州市| 米林县| 通许县| 乐亭县| 佛山市| 翁源县| 鄄城县| 威信县| 西贡区| 石台县| 邻水| 肥城市| 东城区| 浦东新区| 绿春县| 山东省| 平凉市| 阿巴嘎旗| 鸡西市| 原平市| 五河县| 沈阳市| 九江县| 南通市| 会同县| 钟祥市| 西平县| 英山县| 宁夏| 吕梁市| 斗六市| 繁昌县| 阿克苏市| 保靖县| 辽宁省|