邵艷麗, 方曉雯, 楊 驍
(上海大學(xué) 土木工程系, 上海 200072)
SH波作用下樁-液化土-結(jié)構(gòu)體系的水平振動特性
邵艷麗, 方曉雯, 楊 驍
(上海大學(xué) 土木工程系, 上海 200072)
將樁等效為Timoshenko梁,上部結(jié)構(gòu)等效為單自由度彈簧質(zhì)量塊,基于樁-土相互作用的Winkler模型,研究了在垂直入射簡諧SH波作用下樁-液化土-上部結(jié)構(gòu)耦合體系的水平振動特性??紤]土體的自由場位移、上部結(jié)構(gòu)的平動和轉(zhuǎn)動慣性以及和樁軸向壓力的二階效應(yīng),建立了單樁-液化土-上部結(jié)構(gòu)耦合體系的邊值問題,得到樁變形和上部結(jié)構(gòu)運動的解析解。數(shù)值分析了幾何和物理等參數(shù)對樁頭和上部結(jié)構(gòu)位移放大因子和動力放大因子的影響,結(jié)果表明:單樁-液化土-上部結(jié)構(gòu)體系存在明顯的共振現(xiàn)象,且土體自由場位移對樁頭和上部結(jié)構(gòu)的位移放大因子影響顯著;隨著上部結(jié)構(gòu)剛度的增加,樁-液化土-上部結(jié)構(gòu)體系的基頻增大,位移放大因子峰值減小;隨著土體液化的發(fā)展,單樁-液化土-上部結(jié)構(gòu)系統(tǒng)基頻和動力放大因子逐漸減小。
SH波;液化土;樁-土-結(jié)構(gòu)相互作用;Winkler模型;動力特性;解析解
樁基礎(chǔ)在大跨度橋梁、核電站和高層建筑等領(lǐng)域的廣泛應(yīng)用使得樁-土-結(jié)構(gòu)相互作用研究受到眾多學(xué)者的關(guān)注,成為地震工程、建筑工程以及橋梁工程等領(lǐng)域的熱點問題之一[1-2]。大量的地震災(zāi)害調(diào)查表明:地震荷載引起的飽和砂土或粉土液化是結(jié)構(gòu)破壞的主要原因之一[3-5]。相比于非液化土與樁基動力相互作用的理論體系,液化土體與樁基的相互作用理論、分析方法等研究尚未成熟,若干問題亟待解決[6-8]。
在揭示樁-液化土-上部結(jié)構(gòu)相互作用機理的土體液化震害調(diào)查和試驗研究基礎(chǔ)上[9-13],基于樁-土相互作用的Winkler模型,Bhattacharya等[14-15]將樁和上部結(jié)構(gòu)分別等效為Euler-Bernoulli梁和剛體,忽略土體自由場位移,研究了單樁-土-上部剛性結(jié)構(gòu)體系的動力特性,并與離心試驗結(jié)果進行了比較,而楊驍?shù)萚16]研究了液化土側(cè)向擴展對樁變形影響。楊驍?shù)萚17]將樁等效為Rayleigh梁,忽略土體自由場位移,研究了成層液化土中單樁-土-上部結(jié)構(gòu)體系的水平振動特性,而段瑋瑋等[18]利用精確有限元法研究了液化土中Timoshenko樁的自由振動與穩(wěn)定性問題。Varun等[19]建立了樁-土相互作用的非線性動力Winkler模型,研究了液化土體中樁-土-上部結(jié)構(gòu)體系的動力行為,而Ni等[20]提出了一種新的p-y曲線,分析了不同應(yīng)力狀態(tài)下液化土中樁的橫向承載力。Mokhtar等[21]利用三維有限元軟件DIANA研究了土體沉降、樁徑、震級和地震持續(xù)時間等對液化場地中樁基礎(chǔ)性能的影響,而Tang等[22]基于土體彈塑性動力本構(gòu),試驗和數(shù)值研究了液化土中樁-土-上部結(jié)構(gòu)動力相互作用。
在樁-土-上部結(jié)構(gòu)動力相互作用的解析研究中,通常將上部結(jié)構(gòu)等效為固定于樁頂?shù)膭傮w,這樣忽略了上部結(jié)構(gòu)柔性對體系動力行為的影響,并且,若干學(xué)者同時忽略了地震自由場位移的影響。然而,地震中土體自由場位移和上部結(jié)構(gòu)柔性將影響樁-土-結(jié)構(gòu)體系的動力行為,特別地,由于高聳上部結(jié)構(gòu)或高架路橋的上部結(jié)構(gòu)具有較大的柔性,此時,上部結(jié)構(gòu)柔性對體系的動力特性的影響將不可忽略。為此,本文基于樁-土相互作用的Winkler模型,將樁和上部結(jié)構(gòu)分別等效為Timoshenko梁和單自由度彈簧質(zhì)量塊,考慮土體自由場位移、上部結(jié)構(gòu)平動和轉(zhuǎn)動以及樁軸向壓力的二階效應(yīng),建立了樁底基巖垂直入射簡諧SH波作用時液化土層中的單樁-土-上部結(jié)構(gòu)體系的邊值問題,求得樁樁變形和上部結(jié)構(gòu)運動的解析解,通過與相關(guān)實驗結(jié)果的比較,驗證了理論模型及其解析解的合理性和有效性。在此基礎(chǔ)上,分析了單樁-液化土-上部結(jié)構(gòu)系統(tǒng)幾何和物理參數(shù)等對樁頭和結(jié)構(gòu)位移放大因子和動力放大因子的影響。
(a)樁-土-上部結(jié)構(gòu)體系 (b)單樁-土-單自由度彈簧 模型 質(zhì)量體系圖1 樁-土-上部結(jié)構(gòu)體系的物理模型和分析模型Fig.1 Physical and analysis models of pile-soil-superstructure system
顯然,在基巖處簡諧SH波ur(t)=u0Leiωt作用下,土體自由場的穩(wěn)態(tài)振動僅存在y方向的位移分量,且此位移分量僅依賴于坐標x,而與坐標y和z無關(guān)。記土體y方向的位移為uy=(x,y,z,t)=uf(x,t)。由彈性波動理論可得土體自由場的運動方程和邊界條件為[24]
(1)
記土體自由場振動相對于基巖的位移為ws(x,t),即uf=ur+ws,且設(shè)ws(x,t)=Lus(x)eiωt,將其代入式(1),并利用分離變量法可得
(2)
其中,fn(x)=cos(αnx/L)
(3)
將樁等效為Timoshenko梁,且假定為小撓度變形,考慮軸向壓力N的二階效應(yīng),記液化土層和未液化基層中樁的撓度分別為w1(x,t)和w2(x,t),而其截面轉(zhuǎn)角分別為φ1(x,t)和φ2(x,t),則樁的運動方程為[25]
(4)
式中,wj0=wj-uf為樁相對于土層的位移。
由于將上部結(jié)構(gòu)等效為單自由度彈簧質(zhì)量塊,若彈簧的伸長為Δ(t),則質(zhì)量塊的水平位移為wb=w1(0,t)+Δ(t)。記樁頂?shù)募袅蛷澗胤謩e為FS1(0,t)和M1(0,t),則質(zhì)量塊平動和轉(zhuǎn)動運動方程為
(5)
利用物理方程[25]
(6)
可得樁頭邊界條件為
(7)
且
(8)
假定樁底固定于基巖中,且隨基巖振動,則樁底邊界條件為
φ2=0,w2=ur(t)=u0Leiωt,x=L
(9)
液化土層與未液化基層交界處樁的連接性條件可表示為
(10)
對于樁的穩(wěn)態(tài)振動,可設(shè)wj(x,t)=uj(x)eiωt和φj(x,t)=θj(x)eiωt,且引入如下無量綱量和參數(shù)
(11)
(12)
(13)
(14)
(15)
而樁橫截面轉(zhuǎn)角由下式確定
(16)
其中,
β=χG,χ=[(G+N-ω2r2)(G+N)]-1
(17)
(18)
顯然,式(12)有通解
(19)
其中,Ci(i=1,2,…,8)為待定系數(shù),且
(20)
(21)
而
(22)
于是,由式(16)可得
(23)
其中,
(24)
將式(19)和式(23)代入式(13)中,可得確定待定系數(shù)Ci(i=1,2,…,8)的線性方程
[A]{C}=
(25)
其中,[A]為8×8系數(shù)矩陣,={b1,b2,…,b8}T為常矢量,而{C}={C1,C2,…,C8}T,由于篇幅所限,這里不給出[A]和的具體表達式。
求得{C}=[A]-1后,可得無量綱樁頭位移為
ut≡D(ω)=u1(0,ω)
(26)
而上部結(jié)構(gòu)的無量綱位移為
(27)
3.1 理論預(yù)測值與實驗結(jié)果比較
Bhattacharya等[14,27]利用離心機試驗研究了樁基底土體承受水平簡諧SH波作用單樁-完全液化土土-結(jié)構(gòu)體系的動力行為。試驗中上部結(jié)構(gòu)為固定在樁頭質(zhì)量Mb=0.55 kg、慣性矩Jb=1.738×10-4kg·m2的剛性塊;樁為內(nèi)徑和外徑分別為8.5 mm和9.3 mm、長L=189 mm的鋁合金空心圓柱,其彈性和剪切模量分別為E=70 GPa和G=26.5 GPa,泊松比ν=0.3,線質(zhì)量密度m=0.3 g/mm,剪切修正系數(shù)κ=0.532 3[25],橫截面回轉(zhuǎn)半徑和慣性矩分別為r=3.1 mm和I=110.96 mm4,且樁承受軸向壓力N=275 N。
試驗中未液化基層土的反力系數(shù)k2=3.72 MPa,阻尼c2=2 836.09 N·s/m2,液化土阻尼為未液化土阻尼的11%[28],即阻尼c1=311.97 Ns/m2,取液化系數(shù)βL=5.8%[17],即k1=βLk2=0.216 MPa,滿足砂土液化系數(shù)0.02≤βL=k1/k2≤0.1[26];土體剪切模量Gs=7.59 MPa,泊松比νs=0.32,滯后阻尼比ξ=0.05,體密度ρs=1 959 kg/m3。
定義樁頭動力放大因子(DynAFP)和位移放大因子(DisAFP)分別為[14,27]
(28)
以及結(jié)構(gòu)動力放大因子(DynAFB)和位移放大因子(DisAFB)分別為
(29)
取無量綱側(cè)向剛度k=109以模擬上部結(jié)構(gòu)在樁頭剛性固定的情形,圖2給出了當土層完全液化,即l=1時,上述物理和幾何參數(shù)下樁頭動力放大因子ηp隨激勵頻率ω的響應(yīng),其中實線為考慮土體自由場位移,即us(x)≠0時單樁-土-上部結(jié)構(gòu)體系的樁頭動力放大因子,虛線為忽略土體自由場位移,即令us(x)=0時單樁-土-上部結(jié)構(gòu)體系的樁頭動力放大因子,而“*”為試驗結(jié)果??梢?,土體自由場位移將降低樁頭動力放大因子ηp,且相比于忽略土體自由場位移時樁頭動力放大因子ηp,考慮土體自由場位移的樁頭動力放大因子ηp更接近試驗結(jié)果。
圖2 土層完全液化時理論值與實驗結(jié)果的比較Fig.2 Comparisons between theoretical results with the experiment ones when soil is liquefied completely
3.2 參數(shù)分析
仍采用上述物理和幾何參數(shù),且取上部結(jié)構(gòu)側(cè)向剛度kb=27.611 kN/m[29],即無量綱側(cè)向剛度kb0=kbL3/EI=24,圖3給出了忽略土體自由場位移時,不同土體液化深度l下樁頭位移放大因子γp隨無量綱激勵頻率ω的響應(yīng)??梢姡S著液化深度l的增大,即土體軟化程度的增加,體系基頻逐漸減小,但樁頭位移放大因子γp峰值出現(xiàn)先增加后減小的現(xiàn)象,需要注意的是,當液化深度l>0.5時,體系基頻幾乎不變。另外通過觀察圖3(b)可以發(fā)現(xiàn)體系第二固有頻率隨液化深度的增加而減小緩慢,對應(yīng)的位移放大因子γp峰值隨l的增加而減小。圖4給出了忽略土體自由場位移,上部結(jié)構(gòu)剛性固定于樁頭(k=109)時,不同土體液化深度l下樁頭位移放大因子γp隨無量綱激勵頻率ω的響應(yīng)。比較圖3和圖4可以發(fā)現(xiàn),將上部結(jié)構(gòu)等效為單自由度彈簧質(zhì)量塊體系比固定于樁頭的剛性質(zhì)量塊體系的位移放大因子γp峰值偏大、基頻ω1偏小,特別是當激勵頻率ω處于2~8范圍內(nèi)時,單自由度彈簧質(zhì)量塊體系依然會發(fā)生共振,而固定于樁頂?shù)膭傂再|(zhì)量塊體系幾乎不振動。
(a) 頻率范圍0~2 (b)頻率范圍2~8圖3 us(x)=0時樁頭位移放大因子γp隨激勵頻率ω的響應(yīng)Fig.3 Response of the DisAFP γp vs. exciting frequency ωwhen us(x)=0
圖4 us(x)=0且上部剛性結(jié)構(gòu)時樁頭位移放大因子γp隨激勵頻率ω的響應(yīng)Fig.4 Response of the DisAFP γp vs. exciting frequency ω for rigid-fixed superstructure and us(x)=0
圖5和圖6分別給出了考慮土體自由場位移,將上部結(jié)構(gòu)分別等效為單自由度彈簧質(zhì)量塊和固定于樁頭剛性質(zhì)量塊時,不同液化深度l下樁頭位移放大因子γp隨激振頻率ω的響應(yīng)??梢?,其總體變化趨勢與不考慮自由場位移的情形相同,考慮土體自由場位移時第二固有頻率ω2對應(yīng)的樁頭位移放大因子γp峰值隨液化深度變化緩慢,且在ω=7附近的值要大于不考慮土體自由場位移的情況。
(a) 頻率范圍0~2 (b) 頻率范圍2~8圖5 us(x)≠0時,樁頭位移放大因子γp隨激勵頻率ω的響應(yīng)Fig.5 Response of the DisAFP γp vs. exciting frequency ω when us(x)≠0
圖6 us(x)≠0且上部剛性結(jié)構(gòu)時,樁頭位移放大因子γp 隨激勵頻率ω的響應(yīng)Fig.6 Response of the DisAFP γp vs. exciting frequency ω for rigid-fixed superstructure and us(x)≠0
圖7給出了考慮或忽略土體自由場位移,上部結(jié)構(gòu)等效為單自由度彈簧質(zhì)量塊時不同液化深度l下樁頭動力放大因子ηp隨無量綱激勵頻率ω的響應(yīng)??梢?,土體自由場位移對樁頭動力放大因子ηp幾乎無顯著影響,當l<0.5時,液化深度l對樁頭動力放大因子ηp和體系基頻ω1影響顯著,但當l>0.5時,樁頭動力放大因子ηp和體系基頻ω1基本不隨液化深度l而變化。另外,計算發(fā)現(xiàn),相比于固定于樁頭的剛性質(zhì)量塊體系,單自由度彈簧質(zhì)量塊體系的頻率ω1偏小,動力放大系數(shù)峰值偏大ηp,但總體變化趨勢相同。
圖8和圖9分別給出了考慮或忽略土體自由場位移時,不同土體液化深度l下結(jié)構(gòu)位移放大因子γb和結(jié)構(gòu)動力放大系數(shù)ηb隨無量綱激勵頻率ω的響應(yīng)。可見,隨著液化深度l的增大,體系基頻ω1逐漸減小。另外,土體自由場位移僅對結(jié)構(gòu)位移放大因子γb有顯著的影響,而對結(jié)構(gòu)動力放大系數(shù)ηb的影響不大;忽略土體自由場位移,當l>0.5時,結(jié)構(gòu)位移放大因子γb的峰值隨液化深度l的增加而減小,結(jié)構(gòu)動力放大因子ηb基本保持不變,而考慮土體自由場位移,當l>0.5時,γb和ηb幾乎都不隨液化深度變化。
(a)當l<0.5,且us(x)=0 (b)當l>0.5,且us(x)=0
(c)當l<0.5,且us(x)≠0 (d)當l>0.5,且us(x)≠0圖7 樁頭動力放大因子ηp隨激勵頻率ω的響應(yīng)Fig.7 Response of the DynAFP ηp vs. exciting frequency ω
(a)當l<0.5,且us(x)=0 (b)當l>0.5,且us(x)=0
(c)當l<0.5,且us(x)≠0 (d)當l>0.5,且us(x)≠0圖8 上部結(jié)構(gòu)位移放大因子γb隨激勵頻率ω的響應(yīng)Fig.8 Response of the DisAFB γb vs. exciting frequency ω
(a)當l<0.5,且us(x)=0 (b)當l>0.5,且us(x)=0
(c)當l<0.5,且us(x)≠0 (d)當l>0.5,且us(x)≠0圖9 上部結(jié)構(gòu)動力放大因子ηb隨激勵頻率ω的響應(yīng)Fig.9 Response of the DynAFB ηb vs. exciting frequency ω
圖10給出了土層液化深度l=0.4,考慮和忽略土體自由場位移時,不同上部結(jié)構(gòu)側(cè)向剛度k下樁頭位移放大因子γp隨無量綱激振頻率ω的響應(yīng)??梢?,隨著上部結(jié)構(gòu)側(cè)向剛度k的減小,體系基頻ω1減小,而樁頭位移放大因子γp峰值增大,當無量綱側(cè)向剛度k≥30kb0時,側(cè)向剛度k對體系基頻ω1和位移放大因子γp影響較小。
(a)當us(x)=0 (b)當us(x)≠0圖10 不同側(cè)向剛度k下的樁頭位移放大因子γp隨激振頻率ω的響應(yīng)Fig.10 Response of the DisAFP γp vs. exciting frequency ω for different lateral stiffness k
圖11給出了當l=0和l=0.4,其它參數(shù)同上時,不同無量綱化軸向壓力N下樁頭動力放大因子ηp隨無量綱激勵頻率ω的響應(yīng)??梢?,隨著軸向壓力N的增加,樁頭動力放大因子ηp峰值和基頻ω1逐漸減小。對于未液化土體(l=0),當無量綱軸向壓力N=24.91時,體系的基頻ω1=0,此值即為樁失穩(wěn)臨界壓力,即Ncr=24.91,而當土體液化深度l=0.4時,其對應(yīng)的樁失穩(wěn)的臨界壓力Ncr=8.276。同時,計算發(fā)現(xiàn),樁失穩(wěn)臨界荷載Ncr與上部結(jié)構(gòu)側(cè)向剛度k無關(guān)。
(a)未液化土體(l=0) (b)液化土體(l=0.4)圖11 不同軸壓N下樁頭動力放大因子ηp隨頻率ω的響應(yīng)Fig.11 Response of the DynAFP ηp vs. exciting frequency ω for different axial pressure N
圖12給出了其它參數(shù)同上,不同土體液化系數(shù)βL下體系基頻ω1隨液化深度l的響應(yīng)。可見,體系基頻ω1隨液化系數(shù)βL的增大而增大,當βL不變時,隨著液化深度l的增加,體系基頻ω1不斷減小。另外,計算發(fā)現(xiàn),土體未液化,即l=0時,將上部結(jié)構(gòu)等效為固定于樁頭質(zhì)量塊時的體系基頻ω1=2.69,而等效為單自由度彈簧質(zhì)量塊時的體系基頻ω1=1.47,減少約45%??梢姡喜拷Y(jié)構(gòu)模型對體系基頻有顯著的影響。
圖12 不同液化系數(shù)βL下體系基頻ω1隨液化深度l的響應(yīng)Fig.12 Fundamental frequency ω1 of the system vs. different liquefaction depth l for different liquefaction coefficient βL
本文將上部結(jié)構(gòu)等效為單自由度彈簧質(zhì)量塊,研究了樁底基巖承受垂直入射簡諧SH波作用下單樁-液化土-上部結(jié)構(gòu)體系的動力特性??紤]土體自由場位移,將樁等效為Timoshenko梁,基于樁-土相互作用的Winkler模型,建立了單樁-液化土-上部結(jié)構(gòu)動力響應(yīng)的邊值問題,利用分離變量法求得了樁變形和上部結(jié)構(gòu)運動的解析解。在驗證理論模型和解析解正確性的基礎(chǔ)上,分析了上部結(jié)構(gòu)側(cè)向剛度、土體液化深度和液化系數(shù)等參數(shù)對體系動力放大因子和位移放大因子的影響,并與將上部結(jié)構(gòu)等效為固定于樁頭質(zhì)量塊體系的相應(yīng)結(jié)果進行比較,結(jié)果表明:
(1)將上部結(jié)構(gòu)等效為單自由度彈簧質(zhì)量塊體系與將上部結(jié)構(gòu)等效為固定于樁頂質(zhì)量塊體系相比,樁的失穩(wěn)臨界荷載相同,但彈簧質(zhì)量塊體系的樁頭位移放大因子峰值偏大、基頻偏小。
(2)土體自由場位移對樁頭和結(jié)構(gòu)的位移放大因子有顯著影響,自由場位移將放大位移放大因子,但對結(jié)構(gòu)動力放大因子影響不大。
(3)隨著上部結(jié)構(gòu)側(cè)向剛度的增加,樁-液化土-上部結(jié)構(gòu)體系的固有頻率增大,位移放大因子峰值減小,當側(cè)向剛度很大時,側(cè)向剛度對體系基頻和位移放大因子幾乎沒有影響,此時為上部結(jié)構(gòu)固定于樁頭的情形。
(4)隨著樁軸向壓力的增加,樁頭動力放大因子峰值和基頻逐漸減小。
(5)隨著土體液化系數(shù)減小和液化深度l的增大,體系基頻減小,但當液化深度超過土層厚度一半時,基頻減小幅度很小。
[1] POULOS H G, DAVIS E H. Pile foundation analysis and design[M]. New York: John Wiley & Sons,1980: 336-353.
[2] 薛素鐸, 劉毅, 李雄彥. 土-結(jié)構(gòu)動力相互作用研究若干問題綜述[J]. 世界地震工程, 2013, 29(2): 1-7.
XUE Suduo,LIU Yi,LI Xiongyan. Review of some problems about research on soil-structure dynamic interaction[J]. World Earthquake Engineering, 2013, 29(2): 1-7.
[3] 陳國興, 金丹丹, 常向東, 等. 最近20年地震中場地液化現(xiàn)象的回顧與土體液化可能性的評價準則[J]. 巖土力學(xué), 2013, 34(10): 2737-2795.
CHEN Guoxing, JIN Dandan, CHANG Xiangdong, et al. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2795.
[4] CHU D B, STEWART M, YOUD T L, et al. Liquefaction induced lateral spreading in near-fault regions during the1999 Chi-Chi, Taiwan earthquake[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1549-1565.
[5] YASUDA S, HARADA K, ISHIKAWA K, et al. Characteristics of liquefaction in Tokyo Bay area by the 2011 Great East Japan Earthquake [J]. Soils and Foundations, 2012, 52(5): 793-810.
[6] BHATTACHARYA S, MADABHUSHI S P G. A critical review of methods for pile design in seismically liquefiable soils[J]. Bulletin of Earthquake Engineering, 2008, 6(3): 407-446.
[7] KNAPPETT J, MADABHUSHI S. Liquefaction-induced settlement of pile groups in liquefiable and laterally spreading soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(11): 1609-1618.
[8] TANG L, MAULA B H, LING Xianzhang, et al. Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefiable soils[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(1): 171-180.
[9] WAKAMATSU K, YOSHIDA N, SUZUKI N, et al. Large ground deformations and their effects on lifelines: 1964 Niigata earthquake. In case studies of liquefaction and lifelines performance during past earthquake: Japanese case studies, NCEER-92-0001[R]. New York: US National Center for Earthquake Engineering Research, 1992: 1-52.
[10] BHATTACHARYA S, HYODO M, GODA K, et al. Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1618-1628.
[11] ABDOUN T, DOBRY R. Centrifuge scaling laws of pile response to lateral spreading[J]. International Journal of Physical Modelling in Geotechnics, 2011, 11(1): 2-22.
[12] 黃占芳, 王顯耀, 吳植安, 等. 液化砂土中單樁地震響應(yīng)振動臺試驗研究[J]. 振動與沖擊, 2012, 31(20): 189-192.
HUANG Zhanfang, WANG Xianyao, WU Zhi’an, et al. Shaking table tests for single pile-soil dynamic interaction in liquefied foundations[J]. Journal of Vibration and Shock, 2012, 31(20): 189-192.
[13] CHANG B J, HUTCHINSON T C. Tracking the dynamic characteristics of a nonlinear soil-pile system in multi-layered liquefiable soils[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 89-95.
[14] BHATTACHARYA S, ADHIKARI S. Vibrational characteristics of a piled structure in liquefied soil during earthquakes: Experimental Investigation (Part I) and Analytical Modelling (Part II) [R]. Oxford University Engineering Department, Department of Engineering Science, 2007.
[15] ADHIKARI S, BHATTACHARYA S. Dynamic instability of pile-supported structures in liquefiable soils during earthquakes [J]. Shock and Vibration, 2008, 15(6): 665-685.
[16] 楊驍, 邱波. 液化土側(cè)向擴展對具有軸向力單樁的變形影響[J]. 力學(xué)季刊, 2010, 31(1): 131-137.
YANG Xiao, QIU Bo. Influence of lateral spreading on deformation of single pile in liquefaction soils[J]. Chinese Quarterly of Mechanics, 2010, 31(1): 131-137.
[17] 楊驍, 何光輝. 成層液化土中單樁-土-結(jié)構(gòu)系統(tǒng)的水平振動分析[J]. 上海大學(xué)學(xué)報(自然科學(xué)版), 2011, 17(6): 779-784.
YANG Xiao, HE Guanghui. Horizontal vibration analysis of pile-soil-superstructure system in layered liquefiable soil[J]. Journal of Shanghai University (Natural Science), 2011, 17(6): 779-784.
[18] 段瑋瑋, 黃柱, 何光輝, 等. 液化場地中Timoshenko 樁自由振動與屈曲的精確數(shù)值解[J]. 工程力學(xué), 2013, 30(12): 138-144.
DUAN Weiwei, HUANG Zhu, HE Guanghui, et al. Exact numerical solutions for vibration and buckling of a Timoshenko pile in liquefied deposite[J]. Engineering Mechanics, 2013, 30(12): 138-144.
[19] VARUN ASSIMAKI D, SHAFIEEZADEH A. Soil-pile-structure interaction simulations in liquefiable soils via dynamic macroelements: Formulation and validation[J]. Soil Dynamics and Earthquake Engineering, 2013, 47(Sup1):92-107.
[20] NI S H, XIAO X, YANG Y Z. A p-y curve-based approach to analyze pile behavior in liquefied sand under different stress states[J]. Journal of Geoengineering, 2014, 9(3): 85-93.
[21] MOKHTAR A S A, ABDEL-MOTAAL M A, WAHIDY M M. Lateral displacement and pile instability due to soil liquefaction using numerical model[J]. Ain Shams Engineering Journal, 2014, 5(4):1019-1032.
[22] TANG L, MAULA B H, LING X Z, et al. Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefiable soils [J]. Earthquake Engineering and Engineering Vibration, 2014, 13(1): 171-180.
[23] MISKO C, KENJI I. Simplified method for analysis of piles undergoing lateral spreading in liquefied soils [J]. Soils and foundations, 2004, 44(5): 119-133.
[24] KOO K K, CHAU K, YANG X, et al. Soil-pile-structure interactions under SH waves [J]. Earthquake Engineering and Structural Dynamics, 2003, 32(3): 395-415.
[25] HAN S M, BENAROYA H, WEI T. Dynamic of transeversely vibrating beams using four engineering theories [J]. Journal of Sound and Vibration, 1999, 225(5): 935-988.
[26] TOKIMATSU K, ASAKA Y. Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogeken-Nambu earthquake [J]. Soils and Foundations, 1998, Special Issue (2): 163-177.
[27] BHATTACHARYA S, MADABHUSHI S P G, BOLTON M D. An alternative mechanism of pile failure in liquefiable deposits during earthquakes [J]. Geotechnique, 2004, 54(3): 203-213.
[28] BHATTACHARYA S, ADHIKARI S, ALEXANDER N A. A simplified method for unified buckling and free vibration analysis of pile-supported structures in seismically liquefiable soils [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(8): 1220-1235.
[29] 林基聰. 液化場地橋梁群樁基礎(chǔ)抗震簡化分析方法[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2012.
Horizontalvibrationcharacteristicsofapile-liquefiedsoil-superstructureunderSHwave
SHAO Yanli, FANG Xiaowen, YANG Xiao
(Department of Civil Engineering,Shanghai University,Shanghai 200072,China)
Treating a pile and a superstructure as a Timoshenko beam and a single degree of freedom spring-mass system, respectively, the horizontal vibration characteristics of the pile-liquefied soil-superstructure coupled system subjected to a vertical incident harmonic SH wave was investigated based on the Winkler model of the pile-soil interaction. The boundary value problem of the single pile-liquefied soil-superstructure coupled system was established, in which the free-field displacement of the soil, translational and rotational inertia of the superstructure and the second order effect of the axial pressure of the pile were taken into consideration. And the analytical solutions of the pile deformation and superstructure motion were derived. The influences of the geometry and physics parameters on the displacement amplification factors and dynamic amplification factors at the pile top and of superstructure were examined numerically. It is shown that there exists an evident resonance phenomenon in the single pile-liquefied soil-superstructure system, and the influence of the soil free-field displacement on the displacement amplification factors of the pile top and superstructure is remarkable. Furthermore, with the increase of the superstructure stiffness, fundamental frequency of the single pile-liquefied soil-superstructure system increases and the peak value of displacement amplification factors decreases. At the same time, with the development of soil liquefaction degree, the fundamental frequency and dynamic amplification factors of the single pile-liquefied soil-superstructure system decreases.
SH wave; liquefied soil; pile-soil-structure interaction; Winkler model; dynamic characteristics; analytical solution
國家自然科學(xué)基金項目(10872124)
2016-04-27 修改稿收到日期: 2016-07-18
邵艷麗 女,碩士生,1990年生
楊驍 男,博士,教授,1965年生
TU473.1
A
10.13465/j.cnki.jvs.2017.20.032