宋 敏,侯曉雙, 韓 芳, 侯寧寧
(1.濰坊醫(yī)學(xué)院研究生院,山東 濰坊 261000; 2.濰坊醫(yī)學(xué)院附屬醫(yī)院,山東 濰坊 261000)
抑郁癥和2型糖尿病(T2DM)之間的聯(lián)系是雙向的:T2DM使抑郁癥的發(fā)生率增加20%,抑郁癥使T2DM的發(fā)生率增加60%[1],它們之間共享的生物學(xué)機(jī)理可能是抑郁癥和T2DM關(guān)聯(lián)的基礎(chǔ)。抑郁癥和T2DM之間的聯(lián)系,一種解釋是慢性疾病所導(dǎo)致的心理負(fù)擔(dān)使T2DM患者更易患抑郁癥,T2DM患者發(fā)生抑郁與自我管理行為不當(dāng)有關(guān)[2];另一種解釋是抑郁癥與T2DM之間有類(lèi)似的環(huán)境因素和生活方式,如社會(huì)經(jīng)濟(jì)被剝奪、社會(huì)逆境、吸煙、體力活動(dòng)減少等。雖然血糖控制有助于改善抑郁癥的治療效果,但是單純抑郁癥的治療卻不能持續(xù)改善血糖控制[3]。目前研究認(rèn)為,抑郁癥和T2DM的共同發(fā)病機(jī)理主要包括固有免疫與炎癥反應(yīng)、HPA軸、晝夜節(jié)律、胰島素抵抗等。通過(guò)對(duì)兩者共同的發(fā)病機(jī)理進(jìn)行研究,將為研制同時(shí)治療這兩種疾病的新型藥物提供嶄新的思路。本文就上述內(nèi)容作一綜述。
固有免疫的激活和急性期炎癥反應(yīng)與T2DM的發(fā)生密切相關(guān),促炎細(xì)胞因子濃度的升高導(dǎo)致胰島β細(xì)胞凋亡及胰島素抵抗[4];臨床對(duì)照研究發(fā)現(xiàn),抗炎藥物如白細(xì)胞介素-1受體拮抗劑和非甾體類(lèi)抗炎藥物可以改善血糖控制[5]。對(duì)未患有糖尿病的抑郁癥患者研究發(fā)現(xiàn),血清細(xì)胞因子濃度的增加激活下丘腦-垂體-腎上腺(HPA)軸,增加大腦的氧化應(yīng)激,并可能激活色氨酸-犬尿氨酸途徑,減少5-羥色胺(5-HT)的生成[6];接受細(xì)胞因子干擾素α治療的患者,常常發(fā)生抑郁癥狀和認(rèn)知障礙。一項(xiàng)關(guān)于細(xì)胞因子和重度抑郁癥之間關(guān)聯(lián)的Meta分析表明,抑郁癥組血清腫瘤壞死因子(TNF)和白細(xì)胞介素6(IL-6)的濃度明顯高于非抑郁組[7]。另有研究表明,用環(huán)加氧酶2(PTGS2)抑制劑塞來(lái)昔布進(jìn)行輔助治療可減少抑郁癥狀[8]。一項(xiàng)對(duì)3573例T2DM患者進(jìn)行的群組分析表明高濃度的C-反應(yīng)蛋白(CRP)與抑郁癥之間的相關(guān)性存在顯著的統(tǒng)計(jì)學(xué)意義,盡管這種相關(guān)性僅在高BMI患者中體現(xiàn)[9]。另外,抑郁癥可增加T2DM患者癡呆的發(fā)生風(fēng)險(xiǎn)[10],T2DM患者認(rèn)知功能減退與IL-6濃度增加有關(guān)[11]。從童年到中年持續(xù)的低社會(huì)經(jīng)濟(jì)地位可使T2DM的患病風(fēng)險(xiǎn)增加,IL-6和CRP作為其獨(dú)立預(yù)測(cè)因子[12]。如果炎癥參與了T2DM合并抑郁癥的發(fā)生,抗炎治療若能同時(shí)改善血糖和抑郁癥狀,減少炎癥反應(yīng)可能是一種新的治療方案。
HPA軸是神經(jīng)-內(nèi)分泌系統(tǒng)的重要組成部分。應(yīng)激與HPA軸的激活密切相關(guān),它可以通過(guò)腎上腺影響糖皮質(zhì)激素的產(chǎn)生。與慢性應(yīng)激相關(guān)的高皮質(zhì)醇血癥可導(dǎo)致門(mén)靜脈系統(tǒng)和外周循環(huán)系統(tǒng)的游離脂肪酸增加[13]。 皮質(zhì)醇分泌節(jié)律的紊亂可導(dǎo)致腦內(nèi)高親和性的鹽皮質(zhì)激素受體和低親和性的糖皮質(zhì)激素受體之間作用失衡,這種失衡可引發(fā)電壓門(mén)控Ca2+通道改變從而引起細(xì)胞內(nèi)外Ca2+濃度改變,使5-HT對(duì)其特異性受體的敏感性發(fā)生改變,引起5-HT系統(tǒng)功能障礙[14],參與抑郁的發(fā)生。海馬是與學(xué)習(xí)記憶密切相關(guān)的腦組織,同時(shí)也是大腦中極容易受到攻擊的部位,它是腦內(nèi)受血糖影響的第一個(gè)組織,也是抑郁癥發(fā)生的首要部位,過(guò)量的皮質(zhì)醇可阻礙大腦海馬區(qū)的神經(jīng)發(fā)生[15]。
T2DM患者存在促腎上腺皮質(zhì)激素釋放激素(CRH)水平升高的現(xiàn)象,CRH及其受體CRHR1可在慢性應(yīng)激狀態(tài)下調(diào)節(jié)海馬CA3區(qū)神經(jīng)元樹(shù)突形態(tài)及學(xué)習(xí)和記憶功能,且CRH異常升高可直接出現(xiàn)抑郁樣行為[16];過(guò)量的皮質(zhì)醇可阻礙大腦海馬區(qū)的神經(jīng)發(fā)生[15]。高皮質(zhì)醇血癥能夠減弱胰島素將細(xì)胞內(nèi)SLC2A4葡萄糖載體轉(zhuǎn)運(yùn)到細(xì)胞表面的功能[17],導(dǎo)致胰島素抵抗和T2DM的發(fā)生[18]。
動(dòng)物實(shí)驗(yàn)中,鹽皮質(zhì)激素拮抗劑能夠阻止糖皮質(zhì)激素誘導(dǎo)的抑郁癥狀的發(fā)生[19],然而臨床研究并沒(méi)有證實(shí)[20]。由于鹽皮質(zhì)激素拮抗劑如螺內(nèi)酯具有惡化血糖控制的不良反應(yīng)[21],因此在開(kāi)發(fā)新型藥物干預(yù)HPA軸前,必須明確HPA軸在這兩種疾病中所存在的任何共有機(jī)理。
抑郁癥和胰島素抵抗之間的一項(xiàng)Meta分析對(duì)21項(xiàng)研究進(jìn)行調(diào)查,發(fā)現(xiàn)抑郁癥和胰島素抵抗之間存在有統(tǒng)計(jì)學(xué)意義的橫向關(guān)聯(lián), 這一正相關(guān)使抑郁癥和T2DM之間存在生物學(xué)聯(lián)系的合理性增加[22]。對(duì)50~70歲人群進(jìn)行的一項(xiàng)長(zhǎng)達(dá)6年的前瞻性研究表明,抑郁癥的各種伴隨癥狀(疲勞、睡眠障礙、食欲改變)與逐漸增加的胰島素抵抗相關(guān),部分由BMI的增加介導(dǎo)[23]。如果抑郁癥與胰島素抵抗之間的關(guān)聯(lián)有臨床意義,減少胰島素抵抗可能是一種潛在的治療抑郁癥的方法,并可同時(shí)延緩T2DM的進(jìn)展。研究發(fā)現(xiàn),吡格列酮能通過(guò)刺激核受體PPARγ和較小程度地刺激PPARα減少胰島素抵抗,并通過(guò)增加IL-6的基線濃度改善雙相抑郁癥患者的抑郁癥狀[24]。
抑郁癥和T2DM都存在正常晝夜節(jié)律的破壞[25],如慢波睡眠的減少和快速動(dòng)眼期的延長(zhǎng),可能與炎性細(xì)胞因子如IL-6和TNF濃度的增加有關(guān)[26];在抑郁癥狀發(fā)作前可以看到這種睡眠結(jié)構(gòu)的變化[27]。在細(xì)胞水平上,生物鐘基因與晝夜節(jié)律的調(diào)節(jié)密切相關(guān),并且這種基因的表達(dá)受環(huán)境因素如光周期、飲食和社會(huì)因素的影響[28]。在T2DM患者中,生物鐘基因的表達(dá)與空腹血糖水平直接相關(guān)[29]。在抑郁癥患者中,低劑量氯胺酮和睡眠剝奪療法的快速抗抑郁作用可能與異常生物鐘基因的修復(fù)和晝夜節(jié)律的恢復(fù)有關(guān)[30]。這一發(fā)現(xiàn)對(duì)研究生物鐘基因在抑郁癥和T2DM中所起的作用具有重要的意義。
生活方式因素在糖尿病和(或)抑郁癥發(fā)生風(fēng)險(xiǎn)中起重要作用。如抑郁癥患者更傾向于久坐不動(dòng),吃富含飽和脂肪和精制糖的食物,增加T2DM的發(fā)生風(fēng)險(xiǎn)[31];已確診為糖尿病或有抑郁癥狀的患者中,自我管理依從性差是一種普遍現(xiàn)象[32-33]。Meta分析發(fā)現(xiàn),抑郁癥的發(fā)生與糖尿病治療的依從性較差顯著相關(guān)[32];在T2DM患者中進(jìn)行的研究發(fā)現(xiàn),抑郁癥狀的評(píng)分每增加1分,對(duì)攝食水果、蔬菜和足部管理的依從性降低10%[33],提示T2DM和抑郁癥之間可能存在一種相互強(qiáng)化的現(xiàn)象。
抗抑郁藥治療,獨(dú)立于抑郁癥本身,已被認(rèn)為是抑郁癥和T2DM之間可能的聯(lián)系之一。選擇性5-羥色胺再攝取抑制劑(SSRIs)是已知且最常用的能夠使食欲減退的抗抑郁藥,其短期內(nèi)能改善普通人群的血糖控制[34],并且在已確診的T2DM患者中使用SSRIs類(lèi)藥物1年與血糖控制惡化無(wú)關(guān)[35]。未來(lái)的研究應(yīng)該明確基礎(chǔ)抗抑郁藥的應(yīng)用與糖尿病前期階段的發(fā)展之間的前瞻性關(guān)系,以及抗抑郁藥的使用對(duì)糖尿病代謝途徑的直接影響程度。
大量證據(jù)證實(shí),抑郁癥和T2DM之間存在共同的生物學(xué)機(jī)理,這些共同的生物學(xué)機(jī)理可能導(dǎo)致兩種疾病的同步進(jìn)展。分娩前胎兒或母體應(yīng)激、持續(xù)的低社會(huì)經(jīng)濟(jì)地位以及具有遺傳傾向的不良生活行為,都可能導(dǎo)致HPA軸功能紊亂和晝夜節(jié)律紊亂,作為毒素激活固有免疫反應(yīng)。這些生物學(xué)途徑的失調(diào)可能同時(shí)導(dǎo)致胰島素抵抗和T2DM、抑郁癥、癡呆和心血管疾病。當(dāng)大腦中過(guò)量的促炎細(xì)胞因子促進(jìn)色氨酸分解為神經(jīng)活性物質(zhì)(如犬尿氨酸)并降低5-HT濃度時(shí),抑郁癥就可能出現(xiàn)在糖尿病患者中[6]。
目前治療這兩種疾病主要采用聯(lián)合用藥,具有價(jià)格昂貴、不良反應(yīng)多等缺點(diǎn),而新型藥物的開(kāi)發(fā)將大大提高這類(lèi)患者服藥的依從性,減輕患者的經(jīng)濟(jì)負(fù)擔(dān)和心理壓力,從而改善療效。因此,研究專(zhuān)門(mén)針對(duì)這兩種疾病的藥物十分迫切。對(duì)這兩種疾病共同發(fā)病機(jī)理的研究,為研制同時(shí)治療這兩種疾病的新型藥物提供了一個(gè)嶄新的思路。目前,關(guān)于二者共同的發(fā)病機(jī)理在國(guó)外研究頗多,而在國(guó)內(nèi)尚未開(kāi)展同時(shí)治療這兩種疾病的新型藥物的臨床試驗(yàn)。共同機(jī)理中所涉及的各種途徑,包括各種炎癥因子、激素、細(xì)胞因子等是如何相互作用的,以及它們之間的作用效果如何尚不清楚,須進(jìn)一步通過(guò)動(dòng)物和臨床試驗(yàn)加以探討。同時(shí),未來(lái)的研究還應(yīng)探討抑郁癥和T2DM前期之間的縱向關(guān)系,這可能為及時(shí)采取干預(yù)措施、延緩或阻止糖尿病和抑郁癥的發(fā)生提供參考。
[1]MEZUK B, EATON W W, ALBRECHT S, et al. Depression and type 2 diabetes over the lifespan: a meta-analysis[J]. Diabetes Care, 2008,31: 2383-2390.
[2]KATON W J, RUSSO J E, HECKBERT S R, et al. The relationship between changes in depression symptoms and changes in health risk behaviors in patients with diabetes[J]. Int J Geriatr Psychiatry, 2010, 25(5): 466-475.
[3]KATON W, RUSSO J, LIN E H, et al. Cost-effectiveness of a multicondition collaborative care intervention: a randomized controlled trial[J]. Arch Gen Psychiatry, 2012, 69(5): 506-514.
[4]PICKUP J C, CROOK M A. Is type Ⅱ diabetes mellitus a disease of the innate immune system?[J]. Diabetologia, 1998, 41: 1241-1248.
[5]GOLDFINE A B, FONSECA V, JABLONSKI K A, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial[J]. Ann Intern Med, 2013, 159: 1-12.
[6]HOYO-BECERRA C, SCHLAAK J F, HERMANN D M. Insights from interferon-α-related depression for the pathogenesis of depression associated with inflammation [J]. Brain Behav Immun, 2014(42): 222-231.
[7]DOWLATI Y, HERRMANN N, SWARDFAGER W, et al. A meta-analysis of cytokines in major depression[J]. Biol Psychiatry, 2010, 67(5): 446-457.
[8]NA K S, LEE K J, LEE J S, et al. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a meta-analysis[J]. Prog Europsychopharmacol Biol Psychiatry, 2014(48): 79-85.
[9]HAYASHINO Y, MASHITANI T, TSUJII S, et al. Elevated levels of hs-CRP are associated with high prevalence of depression in Japanese patients with type 2 diabetes: the Diabetes Distress and Care Registry at Tenri (DDCRT 6) [J]. Diabetes Care, 2014, 37: 2459-2465.
[10]SULLIVAN M D, KATON W J, LOVATO L C, et al. Association of depression with accelerated cognitive decline among patients with type 2 diabetes in the ACCORD-MIND trial [J]. JAMA Psychiatry, 2013, 70(10): 1041-1047.
[11]MARIONI R, STRACHAN M W, REYNOLDS R M, et al. Association between raised inflammatory markers and cognitive decline in elderly people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study[J]. Diabetes, 2010(59): 710-713.
[12]STRINGHINI S, BATTY G D, BOVET P, et al. Association of life course socioeconomic status with chronic inflammation and type 2 diabetes risk: the Whitehall Ⅱ Prospective Cohort Study[J]. PLoS Med, 2013, 10: e1001479.
[13]KYROU I, TSIGOS C. Stress hormones: physiological stress and regulation of metabolism[J]. Curr Opin Pharmacol, 2009(9): 787-793.
[14]王德杰,劉興國(guó),張東糖.皮質(zhì)激素受體的研究進(jìn)展[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2010,10(8):1592-1594.
[15]HERBERT J, GOODYER I M, GROSSMAN A B, et al. Do corticosteroids damage the brain?[J]. J Neuroendocrinol, 2006, 18: 393-411.
[16]VON W G, AVRABOS C, STEPAN J, et al. Voltage-sensitive dye imaging demonstrates an enhancing effect of corticotropin-releasing hormone on neuronal activity propagation through the hippocampal formation[J]. Psychiatr Res, 2011, 45(2): 256-261.
[17]CODERRE L, VALLEGA G A, PILCH P F, et al. In vivo effects of dexamethasone and sucrose on glucose transport(GLUT-4)protein tissue distribution[J]. Am J Physiol, 1996(271): E643-648.
[18]CHROUSOS G P. The role of stress and the hypothalamic-pituitaryadrenal axis in the pathogenesis of the metabolic syndrome: neuroendocrine and target tissue-related causes[J]. Int J Obes Relat Metab Disord, 2000, 24(Suppl 2): S50-55.
[19]WU T C, CHEN H T, CHANG H Y, et al. Mineralocorticoid receptor antagonist spironolactone prevents chronic corticosterone induced depression-like behavior[J]. Psychoneuroendocrinology, 2013(38): 871-783.
[20]OTTE C, HINKELMANN K, MORITZ S, et al. Modulation of the mineralocorticoid receptor as add-on treatment in depression: a randomized, double-blind, placebo-controlled proof-of-concept study[J]. J Psychiatr Res, 2010(44): 339-346.
[21]SWAMINATHAN K, DAVIES J, GEORGE J, et al. Spironolactone for poorly controlled hypertension in type 2 diabetes: conflicting effects on blood pressure, endothelial function, glycaemic control and hormonal profiles[J]. Diabetologia, 2008(51): 762-768.
[22]KAN C, SILVA N, GOLDEN S H, et al. A systematic review and meta-analysis of the association between depression and insulin resistance[J]. Diabetes Care, 2013, 36(2): 480-489.
[23]KHAMBATY T, STEWART J C, MULDOON M F, et al. Depressive symptom clusters as predictors of 6-year increases in insulin resistance: data from the Pittsburgh Healthy Heart Project[J]. Psychosom Med, 2014, 76(5): 363-369.
[24]KEMP D E, SCHINAGLE M, GAO K M, et al. PPAR-gamma agonism as a modulator of mood: proof-of-concept for pioglitazone in bipolar depression[J]. CNS Drugs, 2014, 28(6): 571-581.
[25]REUTRAKUL S, VAN CAUTER E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes[J]. Ann N Y Acad Sci, 2014(1311): 151-173.
[26]KUDLOW P A, CHA D S, LAM R W, et al. Sleep architecture variation: a mediator of metabolic disturbance in individuals with major depressive disorder[J]. Sleep Med, 2013(14): 943-949.
[27]MODELL S, ISING M, HOLSBOER F, et al. The Munich vulnerability study on affective disorders: premorbid polysomnographic profile of affected high-risk probands[J]. Biol Psychiatry, 2005(58): 694-699.
[28]KARTHIKEYAN R, MARIMUTHU G, SPENCE D W,et al. Should we listen to our clock to prevent type 2 diabetes mellitus?[J]. Diabetes Res Clin Pract, 2014, 106: 182-190.
[29]STAMENKOVIC J A, OLSSON A H, NAGORNY C L, et al. Regulation of core clock genes in human islets[J]. Metabolism, 2012, 61(7): 978-985.
[30]BUNNEY B G, LI J Z, WALSH D M, et al. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder[J]. Mol Psychiatry, 2015, 20(1): 48-55.
[31]MCMARTIN S E, JACKA F N, COLMAN I. The association between fruit and vegetable consumption and mental health disorders: evidence from five waves of a national survey of Canadians[J]. Prev Med, 2013, 56(3/4): 225-230.
[32]GONZALEZ J S, PEYROT M, MCCARL L A, et al. Depression and diabetes treatment nonadherence: a meta-analysis[J]. Diabetes Care, 2008, 31(12): 2398-2403.
[33]GONZALEZ J S, SAFREN S A, CAGLIERO E, et al. Depression, self-care, and medication adherence in type 2 diabetes: relationships across the full range of symptom severity [J]. Diabetes Care, 2007, 30: 2222-2227.
[34]DEUSCHLE M. Effects of antidepressants on glucose metabolism and diabetes mellitus type 2 in adults[J]. Curr Opin Psychiatry, 2013, 26(1): 60-65.
[35]LUSTMAN P J, CLOUSE R E, NIX B D, et al. Sertraline for prevention of depression recurrence in diabetes mellitus: a randomized, double-blind, placebo-controlled trial[J]. Arch Gen Psychiatry, 2006(63): 521-529.