馬麗娜,李書海,張海燕
(赤峰學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院,內(nèi)蒙古 赤峰 024000)
令A(yù)表示單位圓盤U=內(nèi)解析且具有如下形式的函數(shù)類.
設(shè)Σ表示去心單位圓盤U?U\{0}內(nèi)解析且具有如下形式的亞單純?nèi)~函數(shù)類
對于每一個函數(shù)f(z)∈Σ,具有逆函數(shù)f-1,定義為
及
對于具有(1)形式的函數(shù)f(z)的逆函數(shù)f-1具有如下形式,
若函數(shù)f和f-1都在U?內(nèi)單葉,則稱函數(shù)f(z)∈Σ在U?內(nèi)亞純雙向單葉.近來,許多學(xué)者對亞純雙向單葉函數(shù)進(jìn)行了研究,詳見文獻(xiàn)[1-7].
令P表示在U內(nèi)解析且具有如下形式
的函數(shù)p(z)的全體,且Rep(z)>0.
設(shè)函數(shù)u(z)和v(z)在A中解析,若存在一個Schwarz函數(shù)?,在U內(nèi)滿足?( 0)=0和使得u(z)=v( ?(z))(z∈U),則稱函數(shù)u(z)從屬于v(z),記作u(z)?v(z).另外,若v在U內(nèi)單葉,則u(z)?v(z)等價于
函數(shù)f(z)∈A屬于函數(shù)類S?(φ),如果滿足如下條件
其中φ(z)∈P.函數(shù)類S?(φ)和相應(yīng)的凸函數(shù)類K(φ)由Ma和Minda定義[8].
1959年,Sakaguchi[9]引入關(guān)于對稱點的星象函數(shù)類當(dāng)且僅當(dāng)
1987年,El-Ashwa和Thomas[10]引入并研究了關(guān)于共軛點的星象函數(shù)類及關(guān)于對稱共軛點的星象函數(shù)類,分別滿足如下條件
本文將研究一類具有對稱共軛點的亞純雙向單葉倒星象函數(shù)類如下,
定義1.1函數(shù)f(z)∈Σ屬于關(guān)于對稱共軛點的亞純雙向單葉倒星象函數(shù)類ΣSsc(φ)當(dāng)且僅當(dāng)
及
其中g(shù)(ω)=f-1(ω),φ(z)=1+B1z+B2z2+…,B1>0,β<1.
首先,定義的函數(shù)類的積分表達(dá)式.所得結(jié)論推廣了亞純p葉函數(shù)類的一般已得到的積分表達(dá)式[11-13].
定理2.1若f(z)∈ ΣSsc(φ),則
其中u(z)在U內(nèi)解析且u(0)=0及
證明:因為f(z)∈ ΣSsc(φ),則
及
根據(jù)從屬關(guān)系定義,存在解析函數(shù)u,v:U→U滿足u(0)=v(0)=0,,使得
根據(jù)(8)和(12)式,有
根據(jù)Hadamard積(卷積)的性質(zhì),有
因此,利用式(11),(13)及(14),有
從而定理2.1得證.
引理3.1[14]如果p(z)=
上面的不等式估計是精確的.當(dāng)函數(shù)p(z)時,不等式的等號成立.
引理3.2[15-16]如果p(z)=則存在復(fù)數(shù)x,y,且使得
定理3.1函數(shù)f(z)具有(1)式形式,若f(z)∈ΣSsc(φ),則有如下系數(shù)估計
及
上面估計是精確的.
證明:因為f(z)∈ΣSsc(φ),根據(jù)定義1.1及根據(jù)從屬關(guān)系定義,存在解析函數(shù)u,v:U→U滿足u(0)=使得
及
令
及
從而有
分別定義函數(shù)p(z)和q(ω)如下
即,
顯然p,q∈P.從而,有
根據(jù)式(15)-(20),得p1=q1=0,及
因此,有p2=-q2,p3=-q3.
利用引理3.1,得
另一方面,
[1]BULUT S.Coefficient estimates for new subclasses of meromorphic bi-univalent functions[J].International Scholarly Research Notices,2014,2014:1-5.
[2]SCHIFFER M.Sur un probleme d'extremum de la representation conforme[J].Bulletin de la Societe Mathematique de France,1938,66:48-55.
[3]DUREN P L.Coefficients of meromorphic schlicht functions[J].Proceedings of the American Mathematical Society,1971,28(1):169-172.
[4]HAMIDI S G,JANANI T,MURUGUSUNDARAMOORTHY G,et al.Coefficient estimates for certain classes of meromorphic bi-univalent functions[J].Comptes Rendus Mathematique,2014,352(4):277-282.
[5]BULUT S,MAGESH N,BALAJI V K.Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions[J].Comptes Rendus Mathematique,2015,353(2):113-116.
[6]XIAO H G,XU Q H.Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions[J].Filomat,2015,29(7):1601-1612.
[7]AZIZ F S,JUMA R S.Estimating coefficients for subclasses of meromorphic bi-univalent functions associated with linear operator[J].TWMS Journal of Applied and Engineering Mathematics,2014,4(1):39-44.
[8]MA W,MINDA D.A unified treatment of some special classes of univalent functions[M]//Proceedings of the Conference on Complex Analysis,Internat Press,1994:157-169.
[9]SAKAGUCHI K.On a certain univalent mapping[J].Journal of the Mathematical Society of Japan,1959,11(1):72-75.
[10]El ASHWAH R M,THOMAS D K.Some subclasses of closed-to-convex functions[J].J Ramanujan Math Soc,1987,2:86.
[11]WANG ZHI GANG,JIANG YUE PING,SRIVASTAVA H M.Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function[J].Computers and Mathematics with Applications,2009,57:571-586.
[12]SHI LEI,WANG ZHI GANG,ZENG MING HUA.Some subclasses of multivalent spirallike meromorphic functions[J].Journal of Inequalities and Applications,2013,2013:336.
[13]彭娟,劉文娟,楊清.與函數(shù)類(α;a,c;h) 有關(guān)的積分表示和卷積性質(zhì)[J].淮陰師范學(xué)院學(xué)報(自然科學(xué)版),2012,01:22-25.
[14]DUREN P L.Univalent Functions[M].Grundlehren der Mathematischen Wissenschaften,Band 259,New York,Berlin,Heidelberg and Tokyo:Springer-Verlag,1983.
[15]LIBERA R J,ZLOTKIEWICZ E J.Early coefficients of the inverse of a regular convex function[J].Proc Amer Math Soc,1982,85(2):225-230.
[16]LIBERA R J,ZLOTKIEWICZ E J.Coefficient bounds for the inverse of a function with derivatives in P[J].Proc Amer Math Soc,1983,87(2):251-257.