孔令彥
摘 要:高職數(shù)學(xué)是各大高職類院校所有專業(yè)的公共必修課,對學(xué)生們創(chuàng)新能力的培養(yǎng)具有巨大的效用。但是,目前高職數(shù)學(xué)的教學(xué)中還存在一些問題。因此,文章分析了高職數(shù)學(xué)教育所面臨的問題,旨在將數(shù)學(xué)建模融入到教學(xué)課堂中,從而提升學(xué)生創(chuàng)新創(chuàng)業(yè)的能力。
關(guān)鍵詞:高職數(shù)學(xué);數(shù)學(xué)建模;培養(yǎng)人才
過去十年間,高等教育學(xué)校不斷擴(kuò)招,高職學(xué)校的入學(xué)標(biāo)準(zhǔn)越來越低。隨著招生方式的增加,高職院校的生源水平也發(fā)生了改變,進(jìn)入高職中的學(xué)生多半都存在偏科現(xiàn)象,而且偏科嚴(yán)重,整體基礎(chǔ)都較差。高職數(shù)學(xué)作為一門重要的公共必修課,怎么才能讓成績各異的學(xué)生最大限度地掌握這門課程知識(shí),并把它應(yīng)用于社會(huì)生活實(shí)踐中,這一問題非常值得深思。而數(shù)學(xué)建模是一種思考方式,一種數(shù)學(xué)思考方式,是運(yùn)用數(shù)學(xué)的方式和語言,通過抽象、簡化建立來解決實(shí)際問題的一種強(qiáng)有力的方法手段。因此,我們可以把數(shù)學(xué)建模摻入到數(shù)學(xué)課堂建設(shè)中,從學(xué)生的實(shí)際情況出發(fā),采用數(shù)學(xué)軟件進(jìn)行輔助教學(xué),這對培養(yǎng)學(xué)生創(chuàng)新創(chuàng)業(yè)能力有著非常重要的意義。
一、數(shù)學(xué)建模能力培養(yǎng)的重要意義
(一)激發(fā)創(chuàng)新精神與創(chuàng)新思維
傳統(tǒng)教材中的應(yīng)用實(shí)例只能解決單一的小問題,而數(shù)學(xué)建模則打破了傳統(tǒng)數(shù)學(xué)這一原則。學(xué)生們拿到了題目之后,他們腦中探索的潛意識(shí)激發(fā)了自身的創(chuàng)造力,對于那些沒有固定答案的問題他們思考起來就會(huì)更加靈活,這樣學(xué)生們的思維才能打得開。從分析問題、做條件假設(shè)、建立模型、求解檢查、結(jié)果分析再到論文的寫作,這里面的每一個(gè)步驟都是他們自主完成,很大程度上調(diào)動(dòng)了學(xué)生們的積極性。在這種建立模型并且求解的整個(gè)過程中,他們不僅僅實(shí)現(xiàn)了自己的數(shù)學(xué)應(yīng)用能力的提升,而且還開拓了自己的思維。只要擁有了這樣的能力,就算日后他們再面對一些其他問題,也能夠比別人看得更加深入,角度更加多樣化。經(jīng)過了建模過程中的不斷考驗(yàn)和挑戰(zhàn),以及長時(shí)間量的積累,必然能夠?qū)W(xué)生們的創(chuàng)新精神與思維開發(fā)出來。
(二)培養(yǎng)創(chuàng)新能力
解決問題的方式方法就在于學(xué)生對問題的理解與認(rèn)識(shí),如何建立、求解模型,每個(gè)學(xué)生都有屬于自己的一套解題思路。這樣看來,數(shù)學(xué)建模教學(xué)的開展不僅僅是開拓了學(xué)生們的視野,更是對學(xué)生創(chuàng)新能力的培養(yǎng)。利用多角度、多空間的思維模式去思考問題,讓神經(jīng)與神經(jīng)之間在腦中摩擦,這些思考過程中產(chǎn)生的各種思維線路對于學(xué)生來說都是難能可貴的經(jīng)驗(yàn),不僅能夠鍛煉學(xué)生的學(xué)習(xí)能力,更是對每位學(xué)生意志力的磨煉。
(三)培養(yǎng)實(shí)踐能力
“中國制造”2025時(shí)代馬上到來,高等職業(yè)教育非常急切的需要轉(zhuǎn)變方式方法,來適應(yīng)新工業(yè)時(shí)代對高職人才培養(yǎng)的要求。在未來,工業(yè)生產(chǎn)將會(huì)被重新定義,人與技術(shù)、生產(chǎn)的關(guān)系,都將在改革的浪潮中發(fā)生翻天覆地的變化。在今后的生產(chǎn)過程中,“人”將更多被當(dāng)為一個(gè)變量參與到生產(chǎn)中去,簡單機(jī)械性的操作崗位勢必會(huì)被機(jī)器所替代。這就要求職業(yè)教育所培養(yǎng)的新型人才應(yīng)該更具主觀能動(dòng)性與創(chuàng)造性,因此良好的數(shù)學(xué)綜合素質(zhì)是必不可少的。對于高職數(shù)學(xué)課程來說,應(yīng)該著重培養(yǎng)高職學(xué)生的數(shù)學(xué)素養(yǎng)與創(chuàng)新實(shí)踐能力。而數(shù)學(xué)建模主要就是用來解決各個(gè)領(lǐng)域中所遇到的實(shí)際問題,比如經(jīng)濟(jì)管理中,工程技術(shù)中,社會(huì)生活等領(lǐng)域。所以,數(shù)學(xué)建模對于創(chuàng)新實(shí)踐能力的培養(yǎng)是十分重要的,尤其是在培養(yǎng)學(xué)生們想象力和創(chuàng)新能力方面。
二、高職院校數(shù)學(xué)教學(xué)基本情況
(一)學(xué)生的數(shù)學(xué)基礎(chǔ)參差不齊
學(xué)生們進(jìn)入大學(xué)以后,面臨著對未來各種各樣的選擇,其中有一部分學(xué)生認(rèn)為數(shù)學(xué)對將來專升本或在工作中的實(shí)際應(yīng)用不大,所以,學(xué)習(xí)數(shù)學(xué)的積極性較差。部分學(xué)生基礎(chǔ)較差,學(xué)習(xí)能力還不強(qiáng),面對高職數(shù)學(xué)這一門公共的必修課程,都有一定的恐懼心理,這更使得學(xué)習(xí)難度加大。
(二)數(shù)學(xué)課程偏少
高職類的學(xué)生在學(xué)校學(xué)習(xí)時(shí)間本來就比較短,而數(shù)學(xué)作為一門公共課程的學(xué)習(xí)時(shí)間更是少的可憐。根據(jù)學(xué)生們的水平來看,如果要完成全部的教學(xué)內(nèi)容往往會(huì)導(dǎo)致效率下降,而且現(xiàn)有的課時(shí)只能夠滿足教學(xué)部分,至于指導(dǎo)學(xué)生實(shí)踐的課時(shí)就更少了。這也是導(dǎo)致學(xué)生的創(chuàng)新創(chuàng)業(yè)能力提升效果不大的主要原因。
(三)課堂的教學(xué)模式落后
傳統(tǒng)的數(shù)學(xué)教學(xué)以傳授理論知識(shí)為主體,環(huán)環(huán)相扣,與中學(xué)中的知識(shí)構(gòu)成一個(gè)完整的體系。但是隨著社會(huì)發(fā)展,各種職業(yè)教育的培養(yǎng)目標(biāo)也發(fā)生了改變,這就要求學(xué)生們要具有實(shí)踐操作的知識(shí)技能,而不只是學(xué)習(xí)書本上的內(nèi)容。
三、高職數(shù)學(xué)與數(shù)學(xué)建模的關(guān)系
“數(shù)學(xué)是研究現(xiàn)實(shí)生活中數(shù)量關(guān)系和空間形式的數(shù)學(xué)”,這曾是恩格斯說過的一句名言?,F(xiàn)代生活科學(xué)技術(shù)的大發(fā)展都離不開數(shù)學(xué)的支持。大學(xué)生腦中一直都存在數(shù)學(xué)無用、枯燥的想法。而現(xiàn)在的數(shù)學(xué)建模正是理論知識(shí)與現(xiàn)實(shí)問題的一個(gè)橋梁,學(xué)生們正好可以通過數(shù)學(xué)建模來體會(huì)數(shù)學(xué)的實(shí)際意義,感受學(xué)以致用的好處。因此,將數(shù)學(xué)建模融入高職數(shù)學(xué)課堂教學(xué)是十分必要的。
四、高職學(xué)生數(shù)學(xué)建模能力培養(yǎng)的有效路徑
(一)制作微課
制作微視頻,里面包括數(shù)學(xué)建模的簡介,及簡單的數(shù)學(xué)模型,可以開闊學(xué)生視野。激發(fā)學(xué)生學(xué)習(xí)興趣,端正他們的學(xué)習(xí)態(tài)度,從而改變對高等數(shù)學(xué)的偏見,為后面的課堂教學(xué)建立良好的開端。
(二)加入案例
將數(shù)學(xué)建模案例融入到課堂教學(xué)的內(nèi)容中來,使所教的知識(shí)都有一個(gè)實(shí)際的背景,讓學(xué)生切身體會(huì)到“來源于實(shí)際用于實(shí)際”的方式方法。此外,教師要對所有較難的知識(shí)點(diǎn),都設(shè)計(jì)一個(gè)簡單的數(shù)學(xué)建模案例來加以分析,以提高學(xué)生的學(xué)習(xí)效率。
(三)開展數(shù)學(xué)建模競賽
數(shù)學(xué)建模競賽要求學(xué)生根據(jù)給出問題進(jìn)行合理的分析和假設(shè),并解決這個(gè)實(shí)際問題。賽題涉及到的范圍非常廣泛,而且需要高職學(xué)生在短短3天的時(shí)間里,分析問題、搜集資料、查閱文獻(xiàn),并對這些素材進(jìn)行整合運(yùn)用,建立相應(yīng)的數(shù)學(xué)模型。所以,數(shù)學(xué)建模競賽能夠鍛煉學(xué)生的各種能力,培養(yǎng)快速解決問題的邏輯思維。此外,數(shù)學(xué)建模競賽是一個(gè)團(tuán)隊(duì)共同協(xié)作的比賽,參賽學(xué)生必須要有明確的任務(wù)分工,這還有利于培養(yǎng)學(xué)生團(tuán)結(jié)合作、共同奮斗的精神。