李苗苗 王曉強(qiáng) 王東坤 劉元德 孫光軍 沈宏 艾永峰 崔志燕 陳德鑫 王鳳龍
摘 ?要:為解決單一生防菌防效不穩(wěn)定問(wèn)題,通過(guò)平板對(duì)峙試驗(yàn)、相容試驗(yàn)、盆栽試驗(yàn)從6株生防菌中篩選對(duì)煙草疫霉菌(Phytophthora parasitica var. nicotianae)具有較高拮抗活性的復(fù)配菌株組合;利用分子生物學(xué)方法對(duì)各菌株的16S rRNA和gyrA基因進(jìn)行系統(tǒng)進(jìn)化分析,鑒定各菌株分類地位;并采用輪換因子法篩選各菌株的最適發(fā)酵培養(yǎng)基。結(jié)果表明,GY1、GY10和GY12發(fā)酵后混合施用對(duì)煙草黑脛病的防治效果最好,平板抑菌率達(dá)到86.9%,盆栽防效為74.53%,比GY1、GY10、GY12單獨(dú)處理分別提高15.34%、27.42%和44.94%;分子鑒定表明,3株菌分別為貝萊斯芽孢桿菌(Bacillus velezensis)、解淀粉芽孢桿菌(Bacillus amyloliquefaciens)和枯草芽孢桿菌(Bacillus subtilis);并篩選得到了GY1、GY10、GY12的最適發(fā)酵培養(yǎng)基,發(fā)酵24 h后生物量相較于基礎(chǔ)培養(yǎng)基分別增加了75.12%,92.31%和194.55%。
關(guān)鍵詞:煙草黑脛病;芽孢桿菌;生防菌復(fù)配;發(fā)酵
Effect of Biocontrol Agents Mixture on Control of Tobacco Black Shank
LI Miaomiao1, WANG Xiaoqiang1, WANG Dongkun1, LIU Yuande2, SUN Guangjun3, SHEN Hong3,
AI Yongfeng3, CUI Zhiyan4, CHEN Dexin1,5*, WANG Fenglong1*
(1. Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266000, China; 2. Linyi Tobacco Company of Shandong Province, Linyi, Shandong 276002, China; 3. Guizhou Tobacco Company, Guiyang 550004, China; 4. Shangluo Tobacco Company of Shaanxi Province, Shangluo, Shaanxi 726000, China; 5. Hainan Tobacco Company, Haikou 571199, China)
Abstract: In order to address the problem of unstable antibacterial activity of single biocontrol bacteria, a composite strains with high antagonistic activity against Phytophthora parasitica var. nicotianae was screened from six biocontrol bacteria by compatible test, antagonist test and pot test. The taxonomic status of each strain was identified with a phylogenetic analysis of the 16S rRNA and gyrA genes of the strains, and then the optimal fermentation medium for each strain was screened with a single factor test. The co-application of GY1, GY10 and GY12 after fermentation showed the best control effect on tobacco black shank, with the plate inhibition rate reached 86.9% and he potted control effect reached 84.21%, which increased by 17.58%, 26.74% and 35.9% compared with single strains of GY1, GY10 and GY12, respectively. Molecular identification showed that the three strains were Bacillus velezensis, Bacillus amyloliquefaciens and Bacillus subtilis, respectively. The optimal fermentation mediums of GY1, GY10, and GY12 were screened, where the biomass of GY1, GY10 and GY12 increased by 75.12%, 92.31%, and 194.55%, respectively, compared with the basic medium after 24 hours of fermentation.
Keywords: tobacco black shank; Bacillus; biocontrol agents mixture; fermentation
煙草黑脛病是由煙草疫霉菌(Phytophthora parasitica var. nicotianae)引起的根莖類病害[1],在我國(guó)各大煙區(qū)都有發(fā)生,每年造成的損失達(dá)數(shù)億元[2],是制約我國(guó)煙草優(yōu)質(zhì)安全生產(chǎn)的重要因素[3]。煙草黑脛病的防治措施包括農(nóng)業(yè)防治、抗病品種[4]、化學(xué)防治[5]和生物防治[6]等,但抗病品種培育難,地域性強(qiáng)[7];化學(xué)農(nóng)藥長(zhǎng)期大量使用易造成農(nóng)藥殘留、環(huán)境污染和抗藥性[8]等問(wèn)題。隨著綠色防控理念的提出,環(huán)境友好的高效拮抗菌成為防治煙草黑脛病的一項(xiàng)重要措施。
2.1.4 ?盆栽防效試驗(yàn) ?GY1、GY10、GY12的盆栽防效(表3)分別為64.62%、58.49%和51.42%;而GY5、GY8、GY9防效都在40%以下,與平板對(duì)峙結(jié)果一致。處理GY1-GY10-GY12發(fā)酵后混合的病情指數(shù)為20.00,盆栽防效為74.53%,相較于GY1、GY10、GY12單獨(dú)處理分別提高15.34%、27.42%和44.94%。病情指數(shù)及發(fā)病率顯著低于對(duì)照的78.52%和93.33%。綜合平板對(duì)峙試驗(yàn)及盆栽試驗(yàn)結(jié)果選擇GY1-GY10-GY12發(fā)酵后混合的復(fù)配方式進(jìn)行后續(xù)試驗(yàn)。
2.2 ?菌株鑒定
利用16S rRNA基因構(gòu)建的系統(tǒng)發(fā)育樹(shù)顯示,GY1與貝萊斯芽孢桿菌NRRL B-41580聚為一簇,序列同源性為89%;GY10與解淀粉芽孢桿菌NBRC 15535聚為一簇,序列同源性為91%;GY12與枯草芽孢桿菌DSM 10及JCM 1465聚為一簇,序列同源性為99%(圖2 A、B、C)。同時(shí)gyrA基因系
統(tǒng)發(fā)育分析進(jìn)一步表明,GY1與貝萊斯芽孢桿菌R1B序列同源性為100%;GY10與解淀粉芽孢桿菌TEB-31等序列同源性為100%;GY12與枯草芽孢桿菌NRRL BD-559等序列同源性為98%(圖2 D)。因此認(rèn)為GY1、GY10、GY12分別為貝萊斯芽孢桿菌、解淀粉芽孢桿菌及枯草芽孢桿菌。
2.3 ?生長(zhǎng)曲線
GY1、GY12在20 h時(shí)到達(dá)平臺(tái)期,OD600分別達(dá)到1.9和2.3,GY10在30 h時(shí)到達(dá)平臺(tái)期,OD600為1.7(圖3)。而GY1在28 h時(shí)OD600下降,推測(cè)可能與培養(yǎng)基中養(yǎng)分消耗過(guò)度,菌體沉淀等有關(guān)。
2.4 ?菌株最適生長(zhǎng)培養(yǎng)基
GY1在以玉米粉為碳源時(shí)生物量最高,菌體量達(dá)8.37×108 cfu/mL,與其他處理差異顯著(p≤0.05);GY10在以玉米粉做為碳源時(shí)生物量最高,菌體量達(dá)3.8×108 cfu/mL;GY12同樣在以玉米粉做為碳源時(shí)生物量最高,菌體量達(dá)4.27×108 cfu/mL,與其他處理均差異顯著(p≤0.05)(圖4)。綜合考慮發(fā)酵效率及成本后將玉米粉作為GY1、GY10、GY12的最佳生長(zhǎng)碳源。
GY1在以酵母粉做為氮源時(shí)生物量最高,菌體量達(dá)6.6×108 cfu/mL,與其他處理差異顯著(p≤0.05);GY10在以蛋白胨做為氮源時(shí)菌體量最高,
菌體量達(dá)5.8×108 cfu/mL;GY12在以酵母粉做為氮源時(shí)生物量最高,菌體量達(dá)6.4×108 cfu/mL(圖5)。綜合考慮發(fā)酵效率及成本后將酵母粉、蛋白胨、酵母粉分別作為GY1、GY10、GY12的最佳生長(zhǎng)氮源。
GY1在KH2PO4做為無(wú)機(jī)鹽時(shí)生物量最高,菌體量達(dá)7.53×108 cfu/mL;GY10在以CaCO3做為無(wú)機(jī)鹽時(shí)生物量最高,菌體量達(dá)7.5×108 cfu/mL;GY12在以CaCO3做無(wú)機(jī)鹽時(shí)生物量最高,菌體量達(dá)8.1×108 cfu/mL(圖6)。綜合考慮發(fā)酵效率及成本后將KH2PO4、CaCO3、CaCO3做為GY1、GY10、GY12的最佳生長(zhǎng)無(wú)機(jī)鹽。
因此確定3菌株的最適發(fā)酵培養(yǎng)基分別是GY1:玉米粉、酵母粉、KH2PO4;GY10:玉米粉、蛋白胨、CaCO3;GY12:玉米粉、酵母粉、CaCO3。
3 ?討 ?論
芽孢桿菌在自然界分布廣泛,由于其可以產(chǎn)生芽孢,具有較強(qiáng)的抗逆性,且很多菌株具有促進(jìn)植物生長(zhǎng)、防治植物病害的功能,因此在農(nóng)業(yè)生產(chǎn)中
被廣泛應(yīng)用。芽孢桿菌促進(jìn)植物生長(zhǎng)主要是通過(guò)生物固氮、促進(jìn)植物對(duì)營(yíng)養(yǎng)元素的吸收、合成分泌植物生長(zhǎng)調(diào)節(jié)物質(zhì)、釋放揮發(fā)性物質(zhì)等方式進(jìn)行[20-21]。除了對(duì)植物生長(zhǎng)的促進(jìn)作用,芽孢桿菌還被廣泛用于植物病害的生物防治,其中枯草芽孢桿菌是生產(chǎn)上應(yīng)用最為廣泛的一類芽孢桿菌[22],此外解淀粉芽孢桿菌[23]、多粘類芽孢桿菌[24]、短小芽孢桿菌[25]、貝萊斯芽孢桿菌[26]等也被廣泛應(yīng)用。
芽孢桿菌在自然環(huán)境中具有抗逆性強(qiáng)、種群豐富、抗菌效果顯著等明顯優(yōu)勢(shì)[27],在植物病害的防治方面具有非常好的前景,但是目前對(duì)芽孢桿菌的研究主要集中在單個(gè)菌株,對(duì)多菌株共同開(kāi)展的研究較少,在一定程度上限制了該類菌株的應(yīng)用。尤其是在自然環(huán)境條件下單個(gè)菌株往往存在防效不穩(wěn)定、防治靶標(biāo)過(guò)于單一等問(wèn)題,而多菌株復(fù)配可以有效的解決單一菌株存在的問(wèn)題。張良等[28]發(fā)現(xiàn)兩株生防菌復(fù)配對(duì)煙草黑脛病的防效達(dá)69.3%,明顯高于單一菌株。喻會(huì)平等[29]將枯草芽孢桿菌B41和惡臭假單胞菌(Pseudomonas putida)B57復(fù)配,對(duì)煙草黑脛病的盆栽試驗(yàn)防效為75.72%,大田試驗(yàn)防效為67.99%,抑菌效果明顯高于單一菌株。本研究采用平板對(duì)峙法測(cè)定6株生防菌對(duì)煙草黑脛病的拮抗作用,并將防效好的生防菌株復(fù)配,發(fā)現(xiàn)貝萊斯芽孢桿菌GY1、解淀粉芽孢桿菌GY10、枯草芽孢桿菌GY12對(duì)煙草疫霉菌的平板抑制率均達(dá)84%以上,且3菌株相容性好,無(wú)拮抗作用,適合復(fù)配。本研究中,復(fù)配菌GY1-GY10-GY12發(fā)酵后混合施用對(duì)煙草疫霉菌的平板抑菌率達(dá)到86.9%,比GY1、GY10、GY12單獨(dú)處理略有提高(分別提高2.3%、2.7%和1%),但是盆栽防效顯著高于單獨(dú)處理,復(fù)配菌株的防效達(dá)到74.53%,比GY1、GY10、GY12單獨(dú)處理分別提高15.34%、27.42%和44.94%。GY1-GY10-GY12發(fā)酵后混合對(duì)煙草疫霉菌的平板抑制效果影響不大,但明顯提高了盆栽防效,原因可能與單一菌株土壤定殖能力差,三者共同施用增加了各菌株在煙草根際的定殖量和根際土壤微生物多樣性有關(guān);另外復(fù)配可以將三菌株優(yōu)勢(shì)互補(bǔ),從而提高防效。
微生物發(fā)酵過(guò)程中菌體的生物量及抗菌產(chǎn)物的分泌受培養(yǎng)基成分影響較大[30],篩選菌株最適生長(zhǎng)培養(yǎng)基對(duì)提高發(fā)酵效率有重要意義。張紅艷等[31]優(yōu)化地衣芽孢桿菌(Bacillus licheniformis)最佳發(fā)酵培養(yǎng)基組分,結(jié)果表明最佳配比的發(fā)酵培養(yǎng)基可提高發(fā)酵液的菌體濃度和芽孢率。張志焱等[32]通過(guò)單因子試驗(yàn)篩選出最適培養(yǎng)基,優(yōu)化后抗菌肽的效價(jià)提高到了4.25×104 U/mL,是優(yōu)化前的3.51倍。本試驗(yàn)首先通過(guò)繪制生長(zhǎng)曲線得到了GY1、GY10、GY12的增殖趨勢(shì),再通過(guò)輪換因子法篩選3菌株的最適生長(zhǎng)培養(yǎng)基,與直接篩選培養(yǎng)基相比提高了效率。采用篩選后的培養(yǎng)基發(fā)酵相較于基礎(chǔ)培養(yǎng)基生物量(4.3×108、3.9×108、2.75×108 cfu/mL)分別提高75.12%,92.31%和194.55%。結(jié)果表明不同培養(yǎng)基成分對(duì)3種芽孢桿菌的生物量具有很大影響,篩選最適發(fā)酵培養(yǎng)基有助于提高發(fā)酵效率;同時(shí)本試驗(yàn)以玉米粉作為碳源,有效降低了發(fā)酵成本,該結(jié)果可以為菌株的規(guī)?;l(fā)酵提供借鑒。
4 ?結(jié) ?論
結(jié)果表明,GY1-GY10-GY12發(fā)酵后混合是防治煙草黑脛病的高效復(fù)配組合,對(duì)煙草疫霉菌的平板抑菌率為86.9%;盆栽防效為74.53%;GY1、GY10、GY12分別為貝萊斯芽孢桿菌(B. velezensis)、解淀粉芽孢桿菌(B. amyloliquefaciens)和枯草芽孢桿菌(B. subtilis)。三菌株的最適生長(zhǎng)培養(yǎng)基分別為GY1:玉米粉、酵母粉、KH2PO4;GY10:玉米粉、蛋白胨、CaCO3;GY12:玉米粉、酵母粉、CaCO3。
參考文獻(xiàn)
[1] LEE H H, KIM J S, HOANG Q T N, et al. Root-specific expression of defensin in transgenic tobacco results in enhanced resistance against Phytophthora parasitica var. nicotianae[J]. European journal of plant pathology, 2018, 151(3): 811-823.
[2] REN X L, ZHANG N, CAO M H, et al. Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5[J]. Biology & Fertility of Soils, 2012, 48(6): 613-620.
[3] 郭璇,閆杏杏,蔣彩虹,等.雪茄煙Beinhart1000-1對(duì)黑脛病0號(hào)生理小種的抗性遺傳分析[J]. 中國(guó)煙草科學(xué),2017,38(2):56-62.
GUO X, YAN X X, JIANG C H, et al. Genetic analysis of beinhart1000-1 resistance to black shank in tobacco [J]. Chinese Tobacco Science, 2017, 38 (2): 56-62.
[4] 張玉,劉楊,王元英,等. 烤煙新品種中川208的選育及特征特性[J]. 中國(guó)煙草科學(xué),2019,40(5):1-7.
ZHANG Y, LIU Y, WANG Y Y, et al. Breeding and characterization of a new flue-cured tobacco variety Zhongchuan208 [J]. Chinese Tobacco Science, 2019, 40(5): 1-7.
[5] 任曉芬,亓文哲,程星凱,等. 氟菌·霜霉威對(duì)煙草黑脛病的防效及其對(duì)煙株生長(zhǎng)的影響[J]. 中國(guó)煙草學(xué)報(bào),2018,24(4):129-134.
REN X F, QI W Z, CHENG X K, et al. The control efficacy of fluopicolide·propamocarb hydrochloride to tobacco black shank and its effect on tobacco growth[J]. Acta Tabacaria Sinica, 2018, 24(4): 129-134.
[6] 彭閣,姜乾坤,譚軍,等. 煙草黑脛病拮抗真菌的篩選及活性評(píng)價(jià)[J]. 中國(guó)煙草科學(xué),2018,39(1):77-84.
PENG G, JIANG Q K, TAN J, et al. Selection and field evaluation of antagonistic fungi against tobacco black shank [J]. Chinese Tobacco Science, 2018, 39(1): 77-84.
[7] 羅經(jīng)仁,李宏光,李云霞,等. 烤煙新品種湘煙6號(hào)的選育及其特征特性[J]. 中國(guó)煙草科學(xué),2019,40(4):1-6,13.
LUO J R, LI H G, LI Y X, et al. Breeding and characterization of a new flue-cured tobacco variety Xiangyan 6 [J]. Chinese Tobacco Science, 2019, 40(4): 1-6,13.
[8] 江澤軍,張鵬,李永飛,等. 分散固相萃取-高效液相色譜-串聯(lián)質(zhì)譜法測(cè)定水稻和土壤中的福美雙與甲霜靈殘留[J]. 農(nóng)藥學(xué)學(xué)報(bào),2015,17(3):313-320.
JIANG Z J, ZHANG P, LI Y F, et al. Simultaneous determination of thiram and metalaxyl residues in rice and soil by dispersive solid phase extraction and high performance liquid chromatography-tandem [J]. Chinese Journal of Pesticide Science, 2015, 17(3): 313-320.
[9] SAJITHA K L, DEV S A, FLORENCE E J M. Biocontrol potential of Bacillus subtilis B1 against sapstain fungus in rubber wood[J]. European Journal of Plant Pathology, 2018, 150(1): 237-244.
[10] HAN T, YOU C, ZHANG L, et al. Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank[J]. Biocontrol, 2016, 61(2): 195-205.
[11] WANG X L, YUAN Z X, SHI Y Q, et al. Bacillus amyloliquefaciens HG01 induces resistance in loquats against anthracnose rot caused by colletotrichum acutatum[J]. Postharvest Biology and Technology, 2020, 160: 111034.
[12] 楊勝清,張帆,馬貴龍.貝萊斯芽孢桿菌S6拮抗物質(zhì)分離純化及抑菌機(jī)理[J]. 農(nóng)藥,2017,56(9):645-648,660.
YANG S Q, ZHANG F, MA G L. Purification and inhibitive mechanism of antagonist substances from Bacillus velezensis S6 strain [J]. Agrochemicals, 2017, 56(9): 645-648, 660.
[13] 孫立廣,張洪春,趙秀云,等. 煙草青枯病拮抗菌在有機(jī)肥中的定殖效率及田間防治效果[J]. 中國(guó)煙草科學(xué),2016,37(4):48-53.
SUN L G, ZHANG H C, ZHAO X Y, et al. Colonization rate of several antagonistic bacteria against tobacco bacterial wilt in organic fertilizers and control efficacy in field [J]. Chinese Tobacco Science, 2016, 37(4): 48-53.
[14] 鄭淵潔,郝建宇,侯紅萍.黑曲霉產(chǎn)纖維素酶混合發(fā)酵條件的研究[J]. 中國(guó)釀造,2016,35(12):118-122.
ZHENG Y J, HAO J Y, HOU H P. Multi-strains fermentation condition of Aspergillus niger for cellulase production[J]. China Brewing, 2016, 35(12): 118-122.
[15] 藍(lán)星杰,甘良,劉繼紅,等.SC11生防菌劑及其不同復(fù)配對(duì)西瓜和茄子防病促生作用[J]. 西北農(nóng)業(yè)學(xué)報(bào),2015,24(12):117-124.
LAN X J, GAN L, LIU J H, et al. Effects of SC11 combined with other biocontrol agents on disease control and growth promotion in watermelon and eggplant[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(12): 117-124.
[16] 翟世玉,殷輝,周建波,等. 枯草芽胞桿菌發(fā)酵液對(duì)蘋(píng)果樹(shù)腐爛病的防治效果[J]. 植物保護(hù),2019,45(5):226-231,274.
ZHAI S Y, YIN H, ZHOU J B, et al. Control efficacy of Bacillus subtilis fermentation broth against apple valsa canker[J]. Plant Protection, 2019, 45(5): 226-231, 274.
[17] 向世鵬,胡日生,周向平,等. 煙草種質(zhì)資源黑脛病抗性鑒定及親緣關(guān)系SSR分析[J]. 華北農(nóng)學(xué)報(bào),2016,31(S1):156-161.
XIANG S P, HU R S, ZHOU X P, et al. Identification of resistance to black shank disease of tobacco gerplasm resources and analysis of genetic relationship of SSR[J] . North China Agricultural Journal, 2016, 31 (S1): 156-161.
[18] 王恒煦,徐偉慧,楊友財(cái),等. 一株Fusarium oxysporum f. sp. niveum拮抗菌的篩選、鑒定及其抑菌特性[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2019,31(10):1671-1680.
WANG H X, XU W H, YANG Y C, et al. Screening, identification and characteristics of an antagonistic strain against Fusarium oxysporum f.sp. niveum[J]. Acta Agriculturae Zhejiangensis, 2019, 31 (10): 1671-1680.
[19] 關(guān)小紅,張成省,孔凡玉,等.煙草赤星病拮抗細(xì)菌Tpb55搖瓶發(fā)酵條件的篩選[J]. 中國(guó)煙草科學(xué),2009,30(l):54-57.
GUAN X H, ZHANG C S, KONG F Y, et al. Fermentation conditions of antagonistic strain Tpb55 of Bacillus subtilis against tobacco brown spot[J]. Chinese Tobacco Science, 2009, 30(l): 54-57.
[20] ZHANG F, LI X L, ZHU S J, et al. Biocontrol potential of Paenibacillus polymyxa against Verticillium dahliae infecting cotton plants[J]. Biological Control, 2018, 127: 70-77.
[21] JANGIR M, PATHAK R, SHARMA S, et al. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici[J]. Biological Control, 2018, 123: 60-70.
[22] GUO S, ZHANG J W, DONG L H, et al. Fengycin produced by Bacillus subtilis NCD-2 is involved in suppression of clubroot on Chinese cabbage[J]. Biological Control, 2019, 136:104001.
[23] CUI W, HE P, MUNIR S, et al. Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601-Y2 for biocontrol of southern corn leaf blight[J]. Biological Control , 2019, 139: 104080.
[24] SANTIAGO R, HUILINIR C, COTTET L, et al. Microbiological characterization for a new wild strain of Paenibacillus polymyxa with antifungal activity against Botrytis cinerea[J]. Biological Control, 2016, 103: 251-260.
[25] REN J H, LI H, WANG Y F, et al. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker[J]. Biological Control, 2013, 67(3): 421-430.
[26] CUI L, YANG C, WEI L, et al. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biological Control, 2020, 141: 104156.
[27] PALAZZINI J M, DUNLAP C A, BOWMAN M J, et al. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles[J]. Microbiological research, 2016, 192: 30-36.
[28] 張良,劉好寶,顧金剛,等.長(zhǎng)柄木霉和涇陽(yáng)鏈霉菌復(fù)配對(duì)煙苗生長(zhǎng)及其抗病性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2013,24(10):43-45.
ZHANG L, LIU H B, GU J G, et al. Effects of Trichoderma longbrachitum and Streptomyces jingyangensis combination on the growth and disease resistance of tobacco seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 43-45.
[29] 喻會(huì)平,羅定棋,代園鳳,等.煙草黑脛病拮抗細(xì)菌復(fù)合菌株的篩選與防治效果評(píng)價(jià)[J]. 中國(guó)農(nóng)學(xué)通報(bào),2015,31(8):102-107.
YU H P, LUO D Q, DAI Y F, et al. Effects of compound biocontrol strains against tobacco black shank disease[J]. Chinese Agricultural Science Bulletin, 2015, 31(8): 102-107.
[30] 胡俊.拮抗性芽孢桿菌的篩選及其抗菌肽的分級(jí)和性質(zhì)分析[D]. 合肥:安徽工程大學(xué),2017.
HU J. Screening of antagonistic Bacillus and its c antimicrobial peptides purification and analysis[D]. Hefei: Anhui University of Engineering, 2017.
[31] 張紅艷,李忠玲,張強(qiáng),等.地衣芽孢桿菌MYS68的鑒定及發(fā)酵培養(yǎng)基優(yōu)化[J]. 糧食與飼料工業(yè),2018(2):50-53.
ZHANG H Y, LI Z L, ZHANG Q, et al. Identification and optimization of fermentation medium for Bacillus licheniformis MYS68[J]. Cereal & Feed Industry, 2018(2): 50-53.
[32] 張志焱,趙倩,于佳民,等. 一株枯草芽孢桿菌產(chǎn)抗菌肽培養(yǎng)基篩選及發(fā)酵工藝優(yōu)化的研究[J]. 中國(guó)畜牧獸醫(yī),2019,46(4):1217-1226.
ZHANG Z Y, ZHAO Q, YU J M, et al. Selection of culture medium and optimization of fermention conditions for Bacillus subtilis producing antimicrobial peptides[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(4): 1217-1226.
基金項(xiàng)目:中華人民共和國(guó)科學(xué)技術(shù)部項(xiàng)目“煙草化學(xué)農(nóng)藥減施增效途徑及技術(shù)研究”(2018YFD0201104-02);山東省自然科學(xué)基金“吡咯伯克霍爾德氏菌Lyc2抗細(xì)菌相關(guān)基因的鑒定與功能分析”(ZR2018BC037);中國(guó)煙草總公司貴州省公司科技項(xiàng)目“貴州煙草葉斑類病害成災(zāi)規(guī)律與綠色防控技術(shù)研究示范”(201920)
作者簡(jiǎn)介:李苗苗(1993-),女,在讀碩士,主要從事植物病害防治研究。E-mail:1305047786@qq.com
*通信作者,E-mail:chendxtob@126.com;wangfenglong@caas.cn
收稿日期:2019-08-29 ? ? ? ? ? ? ? ? ? 修回日期:2019-12-23