• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Banach空間的U凸系數(shù)

      2020-11-30 08:32王靜崔云安
      關(guān)鍵詞:常數(shù)學(xué)報系數(shù)

      王靜 崔云安

      摘 要:空間幾何常數(shù)是空間幾何性質(zhì)的量化,從幾何性質(zhì)的研究到幾何常數(shù)的計算是從定性到定量的推進。首先引入了一個新的幾何常數(shù)U凸系數(shù),并研究了它與一致非方和正規(guī)結(jié)構(gòu)等幾何性質(zhì)之間的關(guān)系,并且通過研究它與常數(shù)R(X)的關(guān)系,得到Banach空間X弱接近一致光滑,且具有不動點性質(zhì)。其次利用它與弱正交系數(shù)之間的關(guān)系給出了Banach空間具有正規(guī)結(jié)構(gòu)的充分條件。最后給出了U凸模在lp序列空間的計算。

      關(guān)鍵詞:U凸系數(shù);Banach空間;一致非方;正規(guī)結(jié)構(gòu);弱正交系數(shù);Garcia-Falset系數(shù);不動點性質(zhì)

      DOI:10.15938/j.jhust.2020.05.022

      中圖分類號: O177. 3

      文獻標(biāo)志碼: A

      文章編號: 1007-2683(2020)05-0158-06

      Abstract:The spatial geometric constant is the quantification of the geometrical properties of space. From the study of geometric properties to the calculation of geometric constants from qualitative to quantitative advancement. Firstly, this paper introduces a new geometric constant U-convex coefficient. Studying its relationship with geometric properties such as uniform non-square and regular structures and by studying its relationship with constants, the Banach space is weakly close to uniform smooth and has fixed point properties. Secondly, Using the relationship between it and weak orthogonal coefficients gives a sufficient condition for Banach spaces to have a regular structure. Finally, the calculation of the convex model in the sequence space is given.

      Keywords:U-convex coefficient; Banach space; uniform nonsquare; normal structure; weak orthogonal coefficient; Garcia-Falset coefficient; fixed point properties

      0 引 言

      1978年Lau ka-sing 在研究Banach空間的切比雪夫集的過程中引入了U性質(zhì)[1]。此后,Lau ka-sing與Gao Jin 在1991年引入了U空間的概念[2],并刻畫了U空間所具有的性質(zhì),如U空間是一致非方的,進而也是超自反的,一致凸空間和一致光滑空間是U空間,等等[3-5]。為了更好地刻畫U空間的概念,1995年,Gao[6]引入了U凸模的概念。幾何常數(shù)是研究幾何結(jié)構(gòu)的一個重要工具,空間幾何常數(shù)是空間幾何性質(zhì)的量化,從幾何性質(zhì)的研究到幾何常數(shù)的計算是從定性到定量的推進。因此探索幾何結(jié)構(gòu)和幾何常數(shù)之間的聯(lián)系,一直是大家關(guān)注的熱點問題。

      為了方便地刻畫U凸模的幾何性質(zhì)與應(yīng)用。本文引入了一個新的幾何常數(shù),U凸系數(shù),研究了它與一致非方、正規(guī)結(jié)構(gòu)之間的關(guān)系,并且通過研究它與常數(shù)R(X)的關(guān)系,得到Banach空間X若滿足U0(X)<1,則X弱接近一致光滑,且具有不動點性質(zhì)。其次,利用它與弱正交系數(shù)之間的關(guān)系給出了Banach空間具有正規(guī)結(jié)構(gòu)的充分條件,最后給出了U凸模在lp序列空間的計算。

      參 考 文 獻:

      [1] LAU K.S. Best Approximation by Closed Set in Banach Space[J]. Approx Theroy, 1978, 23:29.

      [2] GAO J, K.S.Lau. On Two Classes of Banach Spaces with Normal Strcture. Studia. Mathematia,1991,99(1):41.

      [3] GAO Ji, A New Class of Banach Space with Uniform Normal Structure[J]. Northest Math,2001,17(1):103.

      [4] JAMES R C. Uniformly Nonsquare Banach Spaces[J]. Annals of Math,1964(80): 542.

      [5] 趙耀培,李全紅,董茜. Banach空間的U凸模[J].山東師范大學(xué)學(xué)報. 2004,19(4):82.

      ZHAO Yaopei, LI Quanhong, DONG Xi. Punch of Banach Space [J]. Journal of Shandong Normal University, 2004,194): 82.

      [6] JI D H, ZHAN D P. Some Equivalent Representations of Nonsquare Constants and Its Applications[J]. Communications in Mathematical Research, 1999, 15(4): 61.

      [7] JESU'S G F, LLORENS F E, MAZCU A N E M. Uniformly Nonsquare Banach Spaces Have the Fixed Point Property for Nonexpansive Mappings[J]. Journal of Functional Analysis, 2006, 233(2): 494.

      [8] 左占飛. Banach 空間中的正規(guī)結(jié)構(gòu)和廣義U凸模[J]. 數(shù)學(xué)物理學(xué)報, 2013, 33(2):327.

      ZUO Zhanfei. Normal Structures and Generalized U-convex Modules in Banach Spaces [J]. Journal of Mathematical Physics, 2013, 332): 327.

      [9] 崔云安. Banach空間幾何理論及應(yīng)用[M]. 北京:科學(xué)出版社, 2011.

      [10]W Tingfu, J Donghai, Z Liang. The U-property of Orlicz Sequence Spaces[J]. Chinese Quarterly Journal of Mathematic, 1997, 12(4):55.

      [11]GAO Ji, SATIT Saejung. Normal Structure and Some Geometric Parameters Related to the Modulus of U Convexity in Banach Spaces[J]. Mathematica Scientia, 2011, 31(3):1035.

      [12]Z Zhanfei, C Yunan. Some Modulus and Normal Structure in Banach Space[J].Journal of Inequalities and Applications, 2009, 2009(1):1.

      [13]HUA N. The Fixed Point Theory and the Existence of the Periodic Solution on a Nonlinear Differential Equation[J]. Journal of Applied Mathematics, 2018, 2018(13):1.

      [14]吳森林, 張新玲, 計東海. Banach空間中的完備集[J]. 哈爾濱理工大學(xué)學(xué)報, 2017(2):110.

      WU Senlin, ZHANG Xinling, JI Donghai. Complete Set in Banach Space [J]. Journal of Harbin University of Technology, 2017(2):110.

      [15]趙亮, 張興. Banach空間中的廣義光滑模[J]. 哈爾濱理工大學(xué)學(xué)報, 2016, 21(4):112.

      ZHAO Liang, ZHANG Xing. Generalized Smooth Modules in Banach Spaces [J]. Journal of Harbin University of Technology, 2016,21(4):112.

      [16]趙亮, 王微微, 張興. Banach空間具有正規(guī)結(jié)構(gòu)的判定條件[J]. 哈爾濱理工大學(xué)學(xué)報, 2018,23(4):144.

      ZHAO Liang, WANG Weiwei, Zhang Xing. The Determination Condition of Banach Space with Normal Structure[J]. Journal of Harbin University of Technology, 2018,23(4):144.

      [17]崔云安, 郭晶晶. 與不動點性質(zhì)相關(guān)的新常數(shù)[J]. 哈爾濱理工大學(xué)學(xué)報, 2016, 21(2):122.

      CUI Yunan, GUO Jingjing. New Constants Related to Fixed Point Properties [J]. Journal of Harbin University of Technology, 2016, 212): 122.

      [18]SHANG S, CUI Y, FU Y. Smoothness and Approximative Compactness in Orlicz Function Spaces[J]. Banach Journal of Mathematical Analysis, 2014, 8(1):26.

      [19]ZUO Z, CUI Y. A Note on the Modulus of U-convexity and Modulus of W*-convexity[J]. Journal of Inequalities in Pure and Applied Mathematics, 2008, 9(4):1.

      [20]S Shaoqiang, C Yunan. 2-Strict Convexity and Continuity of Set-Valued Metric Generalized Inverse in Banach Spaces[J]. Abstract and Applied Analysis, 2014, 2014:384639.

      [21]YANG C S, WANG F H. On a Generalized Modulus of Convexity and Uniform Normal Strcture[J]. Acta Mathmatica Scientia,2007,27B(4):838.

      猜你喜歡
      常數(shù)學(xué)報系數(shù)
      非齊次線性微分方程的常數(shù)變易法
      小小糕點師
      蘋果屋
      嬉水
      萬有引力常數(shù)的測量
      Analysis of Characters Shaping in Ring Lardner’s Haircut
      Analysis of I Heard the Owl Call My Name from an Intercultural View
      形如an+1=Can+D·λn+An+B(A,B,C,D,λ為常數(shù)且C≠0,1,λ≠0,1)的數(shù)列通項公式的求法
      論學(xué)報的發(fā)行管理創(chuàng)新
      《十堰職業(yè)技術(shù)學(xué)院學(xué)報》再添殊榮
      门头沟区| 介休市| 渭源县| 灵石县| 镇康县| 桓台县| 毕节市| 鄂尔多斯市| 霍林郭勒市| 津南区| 太湖县| 密山市| 南康市| 东阿县| 平潭县| 五莲县| 札达县| 磐安县| 沧源| 贡山| 肥城市| 深州市| 神池县| 禄劝| 天台县| 乌鲁木齐市| 湖北省| 葫芦岛市| 宜丰县| 固镇县| 光泽县| 长丰县| 长岛县| 缙云县| 资中县| 延津县| 磐石市| 富源县| 栖霞市| 昌平区| 全州县|