張清華 崔闖 卜一之 李喬 夏嵩
摘 要:鋼結(jié)構(gòu)橋梁具有輕質(zhì)、高強(qiáng)、跨越能力大、易工廠化制造和便于裝配化施工等突出優(yōu)點(diǎn),是未來一段時(shí)期中國橋梁工程的重要發(fā)展方向。但由于服役環(huán)境、荷載條件和交通需求、結(jié)構(gòu)體系和構(gòu)造細(xì)節(jié)設(shè)計(jì)等諸多因素的影響,其疲勞問題突出,已成為制約鋼結(jié)構(gòu)橋梁可持續(xù)發(fā)展的世界性難題。作為橋梁工程的熱點(diǎn)研究課題,學(xué)者們?cè)阡摻Y(jié)構(gòu)橋梁疲勞領(lǐng)域進(jìn)行了卓有成效的研究,現(xiàn)聚焦鋼結(jié)構(gòu)橋梁疲勞損傷演化與服役性能劣化機(jī)理、鋼結(jié)構(gòu)橋梁疲勞抗力評(píng)估與預(yù)測、鋼結(jié)構(gòu)橋梁疲勞裂紋監(jiān)測與檢測方法、疲勞開裂加固與維護(hù)技術(shù)等方面,對(duì)2019年度的研究進(jìn)展和下階段的研究重點(diǎn)進(jìn)行扼要的梳理和總結(jié)。分析了鋼結(jié)構(gòu)橋梁疲勞關(guān)鍵問題研究方面的挑戰(zhàn),具體討論了在鋼結(jié)構(gòu)橋梁疲勞失效機(jī)制、疲勞抗力評(píng)估新理論新方法、疲勞損傷智能監(jiān)測與檢測和疲勞開裂加固關(guān)鍵技術(shù)等方面開展深入研究的迫切需求和主要問題。
關(guān)鍵詞:橋梁工程;鋼結(jié)構(gòu)橋梁;疲勞;服役性能
中圖分類號(hào):U448.36 ? 文獻(xiàn)標(biāo)志碼:R ? 文章編號(hào):2096-6717(2020)05-0147-12
收稿日期:2020-03-31
基金項(xiàng)目:國家自然科學(xué)基金(51978579、51878561、51778533);橋梁結(jié)構(gòu)健康與安全國家重點(diǎn)實(shí)驗(yàn)室開放課題重點(diǎn)項(xiàng)目 (BHSKL19-06-KF、BHSKL18-01-KF);廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2019B111106002)
作者簡介:張清華(1975-),男,教授,博士生導(dǎo)師,主要從事高性能鋼與組合結(jié)構(gòu)橋梁研究,E-mail:swjtuzqh@126.com。
Received:2020-03-31
Foundation items:National Natural Science Foundation of China (No. 51978579, 51878561, 51778533); The Open Key Fund Sponsored Program of State Key Laboratory for Bridge Health and Safety (No. BHSKL19-06-KF, BHSKL18-01-KF); Research and Development Projects in Key Areas of Guangdong Province (No.2019B111106002)
Author brief:Zhang Qinghua (1975- ), professor, doctoral supervisor, main research interests: high-performance steel and composite structure bridge, E-mail: swjtuzqh@126.com.
Abstract: Steel bridge has outstanding advantages, such as high ratio of strength to weight, large spanning ability, easy to factory manufacturing and assembly construction, which is an important direction of future development in bridge engineering in China. However, due to the effects of multiple factors such as service environment, load conditions, traffic demand, structural system and structural detail design, fatigue is a critical issueand has become a worldwide problem restricting the sustainable development of steel bridge. As a hot research topic of bridge engineering, considerable efforts from the field of steel bridge fatigue have been done. This paper focuses on reviewing the latest research progress in the aspects of fatigue damage evolution, service performance degradation mechanism, fatigue resistance assessment and prediction, fatigue crack monitoring and detection methods, fatigue crack reinforcement and maintenance technology of steel bridge made by the domestic and foreign scholars, and briefly summarizes the research progress in 2019 and research focus of the next stage of the steel bridge. The paper analyzes the challenges of research on the key fatigue problems of steel bridge, and discusses in detail the urgent needs and major problems for further development in the aspects of steel bridge fatigue failure mechanism, the new evaluation theory and method for fatigue resistance, the steel bridge fatigue damage of the intelligent monitoring and detecting, and the key technology for steel bridge fatigue cracking reinforcement.
Keywords:bridge engineering; steel bridge; fatigue; service performance
鋼結(jié)構(gòu)橋梁以其輕質(zhì)高強(qiáng)、跨越能力大、易工廠化制造和便于裝配化施工等突出優(yōu)點(diǎn),在現(xiàn)代橋梁工程中得到了廣泛應(yīng)用,但中國鋼結(jié)構(gòu)橋梁的發(fā)展和應(yīng)用長期滯后于歐美和日本等發(fā)達(dá)國家。在交通強(qiáng)國戰(zhàn)略深入推進(jìn)的時(shí)代背景下,中國將大力推廣鋼結(jié)構(gòu)橋梁建設(shè),推動(dòng)鋼結(jié)構(gòu)橋梁向“綠色、環(huán)保、可持續(xù)”方向發(fā)展:國務(wù)院政府工作報(bào)告中明確提出積極推廣綠色建筑和建材,大力發(fā)展鋼結(jié)構(gòu);交通部在“十三五”規(guī)劃中指出加快推進(jìn)鋼結(jié)構(gòu)橋梁的發(fā)展應(yīng)用。鋼結(jié)構(gòu)橋梁是未來一段時(shí)期中國橋梁工程的重要發(fā)展方向。
但由于服役環(huán)境、荷載條件和交通需求、結(jié)構(gòu)體系和構(gòu)造細(xì)節(jié)設(shè)計(jì)等諸多因素耦合影響,鋼結(jié)構(gòu)橋梁疲勞開裂并導(dǎo)致結(jié)構(gòu)服役性能顯著惡化甚至直接導(dǎo)致災(zāi)難性事故的案例,在全球范圍內(nèi)頻發(fā)且呈逐年上升態(tài)勢,已成為制約鋼結(jié)構(gòu)橋梁服役安全和服役質(zhì)量的世界難題。疲勞問題作為鋼結(jié)構(gòu)橋梁的基本問題之一,一直是橋梁工程界的熱點(diǎn)研究課題[1-7]。高速、重載的發(fā)展方向?qū)υ谝酆托陆ㄤ摻Y(jié)構(gòu)橋梁的實(shí)際抗疲勞性能提出了更高的要求,大量在役鋼結(jié)構(gòu)橋梁的實(shí)際性能隨服役時(shí)間的延長而不斷劣化,如何通過理論研究、模型試驗(yàn)和實(shí)橋監(jiān)測深化對(duì)于鋼結(jié)構(gòu)橋梁疲勞問題基本屬性和失效機(jī)理的認(rèn)識(shí),引入先進(jìn)的抗疲勞設(shè)計(jì)理念、制造技術(shù)和疲勞損傷監(jiān)測與檢測技術(shù),發(fā)展高疲勞抗力新結(jié)構(gòu),建立鋼結(jié)構(gòu)橋梁服役過程性能劣化控制方法與智能監(jiān)測系統(tǒng),解決新建和在役鋼結(jié)構(gòu)橋梁的疲勞性能不足與性能需求不斷提高之間的突出矛盾,是橋梁工程界亟需解決的關(guān)鍵問題。學(xué)者們圍繞鋼結(jié)構(gòu)橋梁疲勞損傷演化與服役性能劣化機(jī)理、鋼結(jié)構(gòu)橋梁疲勞抗力評(píng)估與預(yù)測、鋼結(jié)構(gòu)橋梁疲勞裂紋監(jiān)測與檢測方法、疲勞開裂加固與維護(hù)技術(shù)等諸多方面開展了卓有成效的研究,主要對(duì)2019年學(xué)者們?cè)谏鲜龇矫嫠〉玫难芯窟M(jìn)展進(jìn)行梳理和總結(jié),明確當(dāng)前的研究現(xiàn)狀、待解決的關(guān)鍵問題以及下階段的研究重點(diǎn)和發(fā)展方向。
1 疲勞損傷演化與服役性能劣化機(jī)理
學(xué)者們對(duì)鋼結(jié)構(gòu)橋梁疲勞損傷演化與服役性能劣化機(jī)理開展了卓有成效的研究,研究內(nèi)容涵蓋構(gòu)造細(xì)節(jié)疲勞失效機(jī)理與疲勞抗力提升機(jī)制、鋼結(jié)構(gòu)橋梁疲勞可靠度、鋼結(jié)構(gòu)橋梁疲勞裂紋擴(kuò)展特性和服役性能劣化機(jī)理等方面。
1.1 疲勞失效機(jī)理與提升設(shè)計(jì)疲勞抗力
在鋼結(jié)構(gòu)橋梁構(gòu)造細(xì)節(jié)疲勞失效機(jī)理與疲勞抗力提升機(jī)制方面,周緒紅等[2-3]和張清華等[8]針對(duì)縱肋與頂板構(gòu)造細(xì)節(jié)和縱肋與橫隔板交叉構(gòu)造細(xì)節(jié)開展了試驗(yàn)和理論研究,明確了其受力特性和實(shí)際疲勞抗力。為了提升鋼結(jié)構(gòu)橋梁構(gòu)造細(xì)節(jié)的疲勞性能,提出了增大焊縫熔透率和鐓邊縱肋等方法,但試驗(yàn)和理論研究均表明[8-10]:雖然引入鐓邊縱肋能夠提高頂板焊趾開裂模式的疲勞抗力,但無法改善頂板焊根這一疲勞易損部位的疲勞抗力。為了提升縱肋與橫隔板交叉構(gòu)造細(xì)節(jié)的疲勞性能,提出了優(yōu)化橫隔板開孔形式和設(shè)置內(nèi)隔板等方法,研究表明[3,11]:優(yōu)化橫隔板開孔形式可以有效改善弧形開孔的局部應(yīng)力集中問題,提高橫隔板弧形開孔位置的疲勞抗力;設(shè)置內(nèi)隔板雖能夠提高縱肋腹板焊趾開裂模式的疲勞抗力,但施工困難且可能引發(fā)縱肋內(nèi)焊機(jī)器人不能進(jìn)入縱肋進(jìn)行內(nèi)側(cè)焊縫施焊等問題。聶建國[1]和張喜剛等[5]明確指出發(fā)展高性能結(jié)構(gòu)是實(shí)現(xiàn)中國工程結(jié)構(gòu)可持續(xù)發(fā)展的必由之路。深化鋼結(jié)構(gòu)橋梁疲勞損傷機(jī)理的認(rèn)識(shí),并據(jù)此發(fā)展高性能新型構(gòu)造細(xì)節(jié)和高性能結(jié)構(gòu),有效提升結(jié)構(gòu)體系的疲勞抗力,是解決鋼結(jié)構(gòu)橋梁疲勞開裂問題的有效途徑和當(dāng)前的研究重點(diǎn)。
張清華等[8]在鋼結(jié)構(gòu)橋梁結(jié)構(gòu)體系失效機(jī)理與主導(dǎo)疲勞開裂模式確定方面的研究表明:鋼結(jié)構(gòu)橋梁的疲勞失效過程由各疲勞開裂模式的疲勞致?lián)p效應(yīng)與其疲勞抗力的對(duì)比關(guān)系所決定,疲勞開裂首先在疲勞致?lián)p效應(yīng)超過對(duì)應(yīng)疲勞抗力的重要疲勞開裂模式出現(xiàn),該疲勞開裂模式即為結(jié)構(gòu)體系的主導(dǎo)疲勞開裂模式,對(duì)應(yīng)的失效路徑為結(jié)構(gòu)體系的主導(dǎo)疲勞失效路徑。以正交異性鋼橋面板為例,其疲勞抗力由具有多疲勞開裂模式特性且疲勞抗力存在顯著差異的多個(gè)構(gòu)造細(xì)節(jié)共同決定;其中,縱肋與頂板焊接細(xì)節(jié)和縱肋與橫隔板交叉構(gòu)造細(xì)節(jié)的疲勞開裂占統(tǒng)計(jì)的大量疲勞開裂案例的91.2%,是決定正交異性鋼橋面板疲勞性能的關(guān)鍵構(gòu)造細(xì)節(jié)。針對(duì)上述兩關(guān)鍵構(gòu)造細(xì)節(jié)疲勞抗力不足的問題,從有效改善鋼橋面板結(jié)構(gòu)體系疲勞抗力的角度出發(fā),主要完成了兩方面的研究工作:1)通過同時(shí)引入縱肋與頂板新型雙面焊構(gòu)造細(xì)節(jié)和多種縱肋與橫隔板新型交叉細(xì)節(jié),發(fā)展了高性能新型正交異性鋼橋面板結(jié)構(gòu)體系。研究表明,實(shí)現(xiàn)結(jié)構(gòu)體系主導(dǎo)疲勞開裂模式的遷移,是顯著提高結(jié)構(gòu)體系疲勞抗力的有效途徑。高性能新型正交異性鋼橋面板結(jié)構(gòu)及其典型疲勞開裂模式如圖1所示;2)通過引入高性能混凝土結(jié)構(gòu)層提高鋼橋面板局部剛度、降低U肋的面外變形,提出了大縱肋正交異性鋼高性能混凝土組合橋面板結(jié)構(gòu)體系,完成了普通混凝土(NC)、工程用水泥基復(fù)合材料(ECC)和超高性能混凝土(UHPC)3類結(jié)構(gòu)層條件下結(jié)構(gòu)體系的力學(xué)行為和優(yōu)化設(shè)計(jì)、關(guān)鍵傳力構(gòu)件的靜力和疲勞性能、結(jié)構(gòu)體系的疲勞失效機(jī)理等一系列的理論分析和試驗(yàn)研究工作,闡明了其疲勞損傷演化全過程及其疲勞失效機(jī)制,提出了考慮混凝土劣化效應(yīng)的組合橋面板結(jié)構(gòu)體系疲勞抗力評(píng)估方法。
另外,在鋼結(jié)構(gòu)橋梁疲勞可靠度和疲勞裂紋擴(kuò)展特性等方面,李杰[12]在對(duì)工程結(jié)構(gòu)整體可靠性研究的基礎(chǔ)上,建立了工程結(jié)構(gòu)可靠性理論分析的新體系。李傳習(xí)等[13]和李愛群等[14]基于可靠度理論對(duì)隨機(jī)車輛荷載作用下鋼橋面板的疲勞可靠度進(jìn)行了評(píng)估,確定了運(yùn)營荷載和構(gòu)造細(xì)節(jié)設(shè)計(jì)等因素對(duì)鋼橋面板疲勞可靠度的影響規(guī)律。卜一之等[15]和張清華等[16]建立了三維疲勞裂紋擴(kuò)展模擬方法,對(duì)鋼橋面板的疲勞裂紋擴(kuò)展特性進(jìn)行了系統(tǒng)研究,得到了其疲勞裂紋擴(kuò)展規(guī)律。
1.2 疲勞抗力劣化機(jī)理與服役性能劣化
黃云等[17]針對(duì)表面缺陷對(duì)構(gòu)造細(xì)節(jié)疲勞抗力劣化效應(yīng)的影響問題開展了探索性研究,結(jié)果表明,初始制造缺陷是決定構(gòu)造細(xì)節(jié)疲勞抗力的控制性影響因素。但當(dāng)前關(guān)于初始制造缺陷對(duì)鋼結(jié)構(gòu)橋梁疲勞抗力劣化問題研究仍較為欠缺,亟需開展深化研究。在鋼結(jié)構(gòu)橋梁的加工制造過程與疲勞抗力的相關(guān)關(guān)系方面,黃云等[17]和Cui等[18]對(duì)于制造過程中產(chǎn)生的初始制造缺陷和初始?xì)堄鄳?yīng)力所致的鋼結(jié)構(gòu)橋梁疲勞抗力劣化與失效機(jī)理問題進(jìn)行了深入研究。由建造技術(shù)和方法所決定,鋼結(jié)構(gòu)橋梁焊接節(jié)點(diǎn)不可避免地存在初始制造缺陷和焊接殘余應(yīng)力。初始制造缺陷在細(xì)觀尺度上所導(dǎo)致的幾何不連續(xù)、應(yīng)力集中和局部塑化,是顯著降低疲勞裂紋萌生壽命并導(dǎo)致構(gòu)造細(xì)節(jié)過早發(fā)生疲勞失效的關(guān)鍵。Cui等[18]從初始制造缺陷的細(xì)觀尺度形態(tài)特性和微觀金相組織形態(tài)特征出發(fā),建立了從疲勞微裂紋成核、萌生到宏觀裂紋擴(kuò)展失效的大跨度鋼結(jié)構(gòu)橋梁焊接節(jié)點(diǎn)跨尺度疲勞損傷評(píng)估模型,揭示了初始制造缺陷對(duì)鋼結(jié)構(gòu)橋梁焊接節(jié)點(diǎn)疲勞抗力的劣化機(jī)理,結(jié)果表明:對(duì)于裂紋萌生壽命占絕對(duì)主導(dǎo)的鋼結(jié)構(gòu)橋梁,初始制造缺陷可導(dǎo)致疲勞抗力降低高達(dá)80%以上,典型分析結(jié)果如圖2所示。對(duì)于焊接殘余應(yīng)力,研究表明,在外部車輛等交變荷載的作用下,焊接殘余應(yīng)力將逐步消散,消散過程由外部循環(huán)荷載幅值、應(yīng)力比等參數(shù)所決定,如圖3所示??傮w而言,該因素對(duì)鋼結(jié)構(gòu)橋梁疲勞抗力的劣化效應(yīng)顯著小于初始制造缺陷所致劣化效應(yīng)。
在外部腐蝕環(huán)境特性對(duì)鋼結(jié)構(gòu)橋梁疲勞損傷與服役性能劣化的效應(yīng)機(jī)制方面,衛(wèi)星等[19]、Jie等[20]、Macho等[21]研究了人工預(yù)腐蝕和復(fù)雜應(yīng)力場交互作用下構(gòu)件連接部位的疲勞性能問題,就腐蝕對(duì)于疲勞損傷的效應(yīng)機(jī)制和復(fù)合型疲勞裂紋的擴(kuò)展準(zhǔn)則進(jìn)行了深入系統(tǒng)的實(shí)驗(yàn)和理論研究,結(jié)果表明:腐蝕將顯著加速疲勞損傷的演化過程,進(jìn)行疲勞抗力評(píng)估時(shí)必須充分考慮腐蝕的劣化效應(yīng)問題。高宗余等[4]指出,在海洋橋梁工程結(jié)構(gòu)中,車輛荷載與復(fù)雜海洋荷載對(duì)于結(jié)構(gòu)疲勞抗力的耦合劣化機(jī)理、海水腐蝕與結(jié)構(gòu)疲勞損傷的交互作用機(jī)制等問題仍有待進(jìn)一步研究。賈東林針對(duì)在役鉚接鋼結(jié)構(gòu)橋梁進(jìn)行的大量研究表明,在受腐蝕和反復(fù)車輛荷載的共同作用下,鉚接鋼桁梁橋構(gòu)件和節(jié)點(diǎn)的疲勞抗力隨服役過程的延長而不斷劣化,進(jìn)而導(dǎo)致結(jié)構(gòu)體系的疲勞性能退化和剩余壽命降低,其疲勞問題本質(zhì)上屬于多尺度經(jīng)時(shí)演化問題;腐蝕和疲勞累積損傷兩種經(jīng)時(shí)效應(yīng)的交互作用,共同決定鉚接鋼桁梁橋疲勞性能的演化過程[22-23]。隨著服役時(shí)間的延長,構(gòu)件和節(jié)點(diǎn)的腐蝕與疲勞損傷相互促進(jìn),二者的交互作用將在構(gòu)件和節(jié)點(diǎn)層面導(dǎo)致其疲勞開裂模式遷移,并加速疲勞抗力劣化,進(jìn)而導(dǎo)致結(jié)構(gòu)體系層面的主導(dǎo)疲勞失效路徑遷移,疲勞性能發(fā)生經(jīng)時(shí)演化,如圖4所示。關(guān)于經(jīng)時(shí)演化過程、關(guān)鍵影響因素及其效應(yīng)機(jī)制等方面的研究當(dāng)前正在進(jìn)行中。
2 鋼結(jié)構(gòu)橋梁疲勞性能評(píng)估
2.1 疲勞性能評(píng)估方法
當(dāng)前廣泛采用的鋼結(jié)構(gòu)橋梁疲勞性能評(píng)估方法主要包括兩類:基于應(yīng)力幅與疲勞壽命相關(guān)關(guān)系的疲勞性能評(píng)估方法和斷裂力學(xué)方法[24-35]。其中,基于線性累積損傷理論的名義應(yīng)力法、熱點(diǎn)應(yīng)力法、結(jié)構(gòu)應(yīng)力法和切口應(yīng)力法等在鋼結(jié)構(gòu)橋梁疲勞性能評(píng)估中得到了廣泛使用[24-35]。Huang等[24]考慮鋼橋面板縱肋與橫肋交叉焊縫的多開裂模式和主導(dǎo)失效路徑問題,基于熱點(diǎn)應(yīng)力法對(duì)該細(xì)節(jié)進(jìn)行了壽命評(píng)估。祝志文等[25]基于實(shí)橋監(jiān)測數(shù)據(jù)對(duì)鋼橋面板橫肋弧形開孔位置的疲勞裂紋擴(kuò)展特性和失效機(jī)理進(jìn)行了研究,并基于名義應(yīng)力法和熱點(diǎn)應(yīng)力法對(duì)該部位的疲勞性能進(jìn)行了評(píng)估,基于熱點(diǎn)應(yīng)力法確定了弧形開孔母材的疲勞強(qiáng)度等級(jí)(FAT125)。熱點(diǎn)應(yīng)力法能夠考慮焊接結(jié)構(gòu)焊趾處的應(yīng)力集中效應(yīng),但計(jì)算結(jié)果易受模型有限元網(wǎng)格的尺寸影響。Luo等[26]采用切口應(yīng)力法對(duì)鋼橋面板頂板與縱肋連接構(gòu)造細(xì)節(jié)的疲勞抗力評(píng)估問題進(jìn)行了研究,確定了鐓邊縱肋與頂板焊接構(gòu)造細(xì)節(jié)的疲勞抗力。Wang等[27]對(duì)鋼橋面板頂板與縱肋構(gòu)造細(xì)節(jié)的疲勞裂紋擴(kuò)展機(jī)理進(jìn)行了探究,在此基礎(chǔ)上采用切口應(yīng)力法對(duì)該構(gòu)造細(xì)節(jié)的疲勞性能進(jìn)行了評(píng)估。由于切口應(yīng)力對(duì)焊縫部位的幾何特征參數(shù)極為敏感,而在焊接過程中,焊縫的尺寸在一定的范圍內(nèi)波動(dòng)且隨機(jī)性較大,實(shí)際上難以準(zhǔn)確確定實(shí)際焊趾部位的準(zhǔn)確幾何參數(shù),在一定程度上限制了切口應(yīng)力法的應(yīng)用。Li 等[28]針對(duì)鋼橋面板關(guān)鍵構(gòu)造細(xì)節(jié)多開裂模式條件下的焊接節(jié)點(diǎn)主導(dǎo)疲勞開裂模式和疲勞性能問題進(jìn)行了研究。在斷裂力學(xué)方法方面,陳艾榮等[29-30]和Cui等[18]基于斷裂力學(xué),通過非線性疲勞累積損傷理論考慮多因素的耦合致?lián)p效應(yīng),對(duì)實(shí)際交通荷載作用下的鋼結(jié)構(gòu)橋梁的疲勞壽命評(píng)估問題進(jìn)行了研究。Sun等[31-32]基于鋼材金相組織微觀損傷力學(xué)理論,提出了自適應(yīng)的大跨度鋼結(jié)構(gòu)橋梁跨尺度疲勞損傷評(píng)估方法,考慮了車輛的動(dòng)態(tài)響應(yīng)對(duì)實(shí)橋進(jìn)行壽命評(píng)估。傳統(tǒng)斷裂力學(xué)方法用于疲勞壽命評(píng)估結(jié)果的關(guān)鍵問題在于評(píng)估的準(zhǔn)確性高度依賴評(píng)估模型中參數(shù)的取值,而相關(guān)參數(shù)受外界環(huán)境和結(jié)構(gòu)材料基本屬性的影響而具有較大的變異性,加劇了疲勞壽命評(píng)估結(jié)果的離散性。基于斷裂力學(xué)和損傷力學(xué)的疲勞性能評(píng)估方法仍有待進(jìn)一步研究。
在鋼結(jié)構(gòu)橋梁疲勞性能評(píng)估方法研究方面,黃云[33]對(duì)于隨機(jī)荷載作用下因荷載相互作用而導(dǎo)致的裂紋擴(kuò)展加速或遲滯效應(yīng)問題進(jìn)行了研究,引入彈塑性斷裂力學(xué)理論考慮裂紋尖端塑性區(qū)的相互作用和裂紋擴(kuò)展特性,建立了基于微小時(shí)間尺度的變幅疲勞裂紋擴(kuò)展理論模型,提出了基于可靠度的鋼橋面板構(gòu)件疲勞抗力評(píng)估方法。當(dāng)前的疲勞性能和評(píng)估方法研究主要聚焦于鋼結(jié)構(gòu)橋梁關(guān)鍵構(gòu)造細(xì)節(jié)的單一開裂模式,通常不考慮結(jié)構(gòu)體系的多疲勞開裂模式特性,因此無法確定結(jié)構(gòu)體系的主導(dǎo)疲勞開裂模式和結(jié)構(gòu)體系的實(shí)際疲勞抗力。為此,張清華等[8]基于鋼結(jié)構(gòu)橋梁疲勞問題的基本屬性,以正交異性鋼橋面板為研究對(duì)象,提出了基于主導(dǎo)疲勞開裂模式的結(jié)構(gòu)體系疲勞抗力評(píng)估方法,并對(duì)其在鋼結(jié)構(gòu)橋梁疲勞抗力評(píng)估中應(yīng)用的關(guān)鍵問題進(jìn)行了系統(tǒng)深入的研究,證明了其適用性、先進(jìn)性和優(yōu)越性[8,28],如圖5所示。
2.2 疲勞損傷狀態(tài)預(yù)后
在既有鋼結(jié)構(gòu)橋梁疲勞損傷狀態(tài)預(yù)后方面,Cui等[34]結(jié)合動(dòng)態(tài)稱重系統(tǒng)(WIM)的車輛實(shí)測數(shù)據(jù),建立了車輛預(yù)測隨機(jī)模型,考慮日均隨機(jī)車流和焊接殘余應(yīng)力,建立了基于可靠度理論的鋼結(jié)構(gòu)橋梁疲勞損傷概率預(yù)測方法。研究結(jié)果表明:對(duì)直接承受輪載作用的鋼橋面板而言,直接承受輪載作用區(qū)域的疲勞損傷遠(yuǎn)大于非輪載作用區(qū);不考慮焊接殘余應(yīng)力將導(dǎo)致鋼結(jié)構(gòu)橋梁疲勞損傷評(píng)估結(jié)果偏于不安全。在此基礎(chǔ)上,針對(duì)以往隨機(jī)車流模擬中未考慮不同時(shí)段早晚高峰與日夜車輛比重差異的問題,結(jié)合實(shí)時(shí)監(jiān)測交通荷載數(shù)據(jù)建立了貝葉斯綜合自回歸移動(dòng)平均(ARIMA)模型[34]?;谠撃P涂煽紤]車橋耦合振動(dòng)、鋪裝層溫度、車速、車輛橫向分布等關(guān)鍵影響因素的效應(yīng),實(shí)現(xiàn)未來一段時(shí)間內(nèi)鋼結(jié)構(gòu)橋梁的疲勞損傷預(yù)后。在此基礎(chǔ)上,通過集成數(shù)據(jù)處理,特征值提取、故障診斷和損傷預(yù)后等模塊,初步建立了鋼結(jié)構(gòu)橋梁疲勞損傷智能監(jiān)測與評(píng)估系統(tǒng)。相關(guān)研究成果在深中通道、武漢青山長江大橋、宜昌伍家崗長江大橋、濟(jì)南長清黃河大橋、西江特大懸索橋、軍山長江大橋等重大工程建設(shè)項(xiàng)目中得到了成功應(yīng)用。
3 鋼結(jié)構(gòu)橋梁疲勞裂紋監(jiān)測與檢測
人工巡檢仍是當(dāng)前實(shí)橋的主要檢測手段,通過目視輔以磁粉或滲透檢測進(jìn)行[35];通過結(jié)構(gòu)響應(yīng)監(jiān)測信息識(shí)別結(jié)構(gòu)損傷是另一類常用方法[46-39]。Wei等[37]、李宏男等[38]和伊廷華等[39]通過橋梁結(jié)構(gòu)健康監(jiān)測系統(tǒng)所獲取的結(jié)構(gòu)響應(yīng)數(shù)據(jù)反演結(jié)構(gòu)的損傷狀態(tài)并識(shí)別損傷。該類方法的損傷識(shí)別結(jié)果與傳感器的類型和布設(shè)位置有關(guān),在高冗余度結(jié)構(gòu)的局部微小損傷監(jiān)測與識(shí)別方面仍面臨困難和挑戰(zhàn)[40-41]。在橋梁健康監(jiān)測領(lǐng)域,為降低橋梁結(jié)構(gòu)的運(yùn)維成本、提高橋梁結(jié)構(gòu)損傷檢測的時(shí)效性與魯棒性,深度融合新一代信息技術(shù),發(fā)展新一代橋梁損傷監(jiān)測與檢測技術(shù)是未來的重要發(fā)展方向[42-43]。李宏男等[44]和朱宏平等[45-46]分別構(gòu)建了不同的神經(jīng)網(wǎng)絡(luò)模型,建立了監(jiān)測數(shù)據(jù)與結(jié)構(gòu)損傷狀態(tài)之間復(fù)雜的映射關(guān)系,達(dá)到了快速識(shí)別結(jié)構(gòu)狀態(tài)的目的。鮑躍全等[47]和Xu等[48-49]提出了基于計(jì)算機(jī)視覺和人工智能的結(jié)構(gòu)裂紋識(shí)別方法,實(shí)現(xiàn)了結(jié)構(gòu)表面淺層疲勞裂紋的遠(yuǎn)程智能化監(jiān)測。鐘新谷等[50]發(fā)展了以無人飛機(jī)為工作平臺(tái)的橋梁結(jié)構(gòu)表面裂縫形狀與寬度識(shí)別的檢測系統(tǒng)。為檢測結(jié)構(gòu)內(nèi)部或隱蔽裂紋,基于聲發(fā)射技術(shù)的無損檢測方法在橋梁結(jié)構(gòu)得到了廣泛應(yīng)用[51]。王介修等[52]基于超聲波在裂紋面處的反射與衍射原理,提出了鋼結(jié)構(gòu)橋梁疲勞裂紋特征參數(shù)的定量檢測方法,該方法可有效檢測淺層或隱蔽性裂紋的深度與擴(kuò)展方向。Nowak等[53]研究了聲發(fā)射傳感器位置和數(shù)量等參數(shù)對(duì)疲勞裂紋回波的影響問題,通過鐵路鋼結(jié)構(gòu)橋梁疲勞裂紋的實(shí)橋監(jiān)測,闡明了聲發(fā)射信號(hào)與裂紋擴(kuò)展之間的內(nèi)在關(guān)聯(lián)機(jī)制。何燕等[54]通過試驗(yàn)確定鋼絞線損傷過程的聲發(fā)射特征,以聲發(fā)射特征參數(shù)作為損傷程度指標(biāo),建立了基于聲發(fā)射技術(shù)的橋梁鋼絞線損傷演化過程監(jiān)測系統(tǒng)。由于大多數(shù)基于聲發(fā)射技術(shù)的檢測方法易受人為操作經(jīng)驗(yàn)、服役環(huán)境等不穩(wěn)定因素干擾,且檢測僅限于傳感器安裝位置的局部范圍內(nèi)。為滿足大跨度鋼結(jié)構(gòu)橋梁長距離檢測的需要,馬宏偉等[55]基于混沌振子檢測系統(tǒng),闡明了超長距離檢測條件下超聲導(dǎo)波關(guān)鍵特征參數(shù)對(duì)裂紋檢測結(jié)果的影響規(guī)律。上述方法適用于宏觀裂紋檢測,對(duì)于疲勞開裂早期微小裂紋的檢測有效性仍有待進(jìn)一步驗(yàn)證。
目前,疲勞裂紋的非人工檢測方法主要包括三大類:基于應(yīng)變的光纖應(yīng)變傳感器和薄膜傳感器檢測的間接損傷識(shí)別方法[56]、基于聲發(fā)射技術(shù)的裂紋直接檢測方法[57]以及基于計(jì)算機(jī)視覺的裂紋圖像智能識(shí)別非接觸式檢測方法[42,58-59]。崔闖等[60]結(jié)合智能檢測技術(shù)的最新發(fā)展和鋼結(jié)構(gòu)橋梁疲勞問題的基本屬性,初步探索了鋼結(jié)構(gòu)橋梁疲勞裂紋定位與識(shí)別的智能化方法:1)對(duì)超聲導(dǎo)波鋼結(jié)構(gòu)疲勞裂紋檢測問題進(jìn)行了全過程數(shù)值模擬和試驗(yàn)研究,結(jié)果表明,超聲導(dǎo)波在橋梁構(gòu)件裂紋缺陷定位檢測方面具有良好的適用性;2)對(duì)基于納米涂層智能傳感器的裂紋監(jiān)測方法進(jìn)行了理論研究與數(shù)值模擬,結(jié)果表明,納米涂層對(duì)于微小裂紋敏感度較高;3)基于計(jì)算機(jī)視覺技術(shù)的裂紋識(shí)別理論,提取了實(shí)際裂紋圖像中的形態(tài)特征,與實(shí)測值的對(duì)比結(jié)果表明,計(jì)算機(jī)視覺技術(shù)在應(yīng)用于疲勞裂紋測量時(shí)有較高的可靠性;4) 將深度學(xué)習(xí)引入結(jié)構(gòu)損傷狀態(tài)的模式識(shí)別中,用于識(shí)別和挖掘時(shí)域信號(hào)、圖像信號(hào)中的損傷信息,結(jié)果表明,以監(jiān)測數(shù)據(jù)為基礎(chǔ)、以模損傷模式識(shí)別為目標(biāo)的神經(jīng)網(wǎng)絡(luò)系統(tǒng)在實(shí)際工程中有廣闊的應(yīng)用前景。其在當(dāng)前鋼結(jié)構(gòu)橋梁疲勞裂紋智能定位與識(shí)別方法的主要研究內(nèi)容如圖6所示。
4 鋼結(jié)構(gòu)橋梁疲勞加固與維護(hù)
學(xué)者們針對(duì)鋼結(jié)構(gòu)橋梁在服役期出現(xiàn)的疲勞開裂加固與維護(hù)問題進(jìn)行了理論和試驗(yàn)研究,提出了多種加固和維護(hù)方法,主要包括:止裂孔法[61]、裂紋閉合沖擊改進(jìn)技術(shù)(Impact Crack-closure Retrofit, ICR)[62-63]、裝配式加固法(CFRP、FRP和鋼構(gòu)件等)[64-72]和組合結(jié)構(gòu)體系方法[73-75]。吉伯海等[61]針對(duì)止裂孔的孔徑和空間位置對(duì)鋼橋疲勞開裂加固效果的影響問題進(jìn)行了研究,并根據(jù)試驗(yàn)與理論分析確定了加固效果較優(yōu)的止裂孔孔徑等;Kinoshita等[63]和吉伯海等[62]通過模型試驗(yàn)研究了ICR加固方法在鋼橋疲勞開裂加固中的適用性問題,對(duì)于采用ICR法加固時(shí)疲勞裂紋與沖擊區(qū)域的合理距離給出了建議值;童樂為[64]、王春生等[65]、Liu等[66]、李傳習(xí)等[67]和Al-Azzawi等[68-69]通過粘貼、栓接或粘栓混合連接等裝配式連接方式與既有結(jié)構(gòu)連接,提出了對(duì)既有結(jié)構(gòu)微損傷或零損傷的冷維護(hù)方法;Lzadi等[70]提出了采用鐵基形狀記憶合金(Fe-SMA)對(duì)鋼桁梁橋的疲勞開裂進(jìn)行加固的方法,并通過疲勞試驗(yàn)驗(yàn)證了其適用性和可行性;邵旭東、田啟賢和吳沖等[71-72]采用UHPC作為結(jié)構(gòu)層,對(duì)正交異性鋼板面板的輕型組合橋面結(jié)構(gòu)加固方法進(jìn)行了深入研究;Kolstein等[73]提出了采用夾層鋼板加固縱肋與頂板焊接細(xì)節(jié)疲勞裂紋的加固方法。Kinoshita等[74]采用超聲沖擊方法對(duì)鋼橋進(jìn)行了加固,結(jié)果表明,超聲沖擊可有效改善焊接接頭的應(yīng)力集中問題,降低焊趾局部微觀缺陷和焊接殘余應(yīng)力的不良效應(yīng),顯著提高鋼橋焊接接頭的疲勞抗力。卜一之等[75]對(duì)鋼結(jié)構(gòu)橋梁疲勞開裂的加固方法進(jìn)行了試驗(yàn)和理論研究,圍繞止裂孔、激光熔敷等加固方法對(duì)加固效果的關(guān)鍵影響因素開展相關(guān)研究。張清華[76]等發(fā)展了鋼橋面板栓接鋼構(gòu)件的裝配式加固方法并通過試驗(yàn)與理論分析驗(yàn)證了其加固效果,并提出了一種基于新型智能材料——形狀記憶合金(SMA)的鋼結(jié)構(gòu)橋梁主動(dòng)加固方法,研究了主動(dòng)加固方法對(duì)鋼結(jié)構(gòu)橋梁疲勞開裂的加固效果,闡明了SMA加固件對(duì)鋼結(jié)構(gòu)橋梁疲勞裂紋擴(kuò)展的抑制機(jī)理,如圖7所示。
5 結(jié)論與展望
總體而言,通過學(xué)者們長期艱苦卓絕的不懈努力,在鋼橋疲勞研究領(lǐng)域取得了可喜進(jìn)展。在當(dāng)前的時(shí)代背景下,站在巨人的肩膀上,緊緊抓住交通強(qiáng)國戰(zhàn)略和中國大力推廣鋼結(jié)構(gòu)橋梁的歷史機(jī)遇,引入數(shù)學(xué)、力學(xué)、理論分析、試驗(yàn)檢測技術(shù)、加工制造技術(shù)和人工智能等領(lǐng)域的最新成果,在基礎(chǔ)理論和重大工程應(yīng)用兩方面繼續(xù)努力,進(jìn)一步深化對(duì)于鋼結(jié)構(gòu)橋梁疲勞失效機(jī)制的認(rèn)識(shí),發(fā)展新的理論與方法,根據(jù)實(shí)際需求拓展新的研究領(lǐng)域,通過創(chuàng)新性成果為鋼結(jié)構(gòu)橋梁的可持續(xù)發(fā)展建立更為完備的保障體系,前景光明,但仍然任重道遠(yuǎn)。筆者認(rèn)為以下幾個(gè)方面的研究對(duì)于深化鋼結(jié)構(gòu)橋梁疲勞開裂問題本質(zhì)屬性的認(rèn)識(shí)、提高結(jié)構(gòu)體系的疲勞性能具有重要的推動(dòng)作用,是下一階段的研究重點(diǎn):
1)在高性能材料應(yīng)用方面,耐候鋼在中國的鋼結(jié)構(gòu)橋梁中逐步得到推廣應(yīng)用,在非氯離子腐蝕環(huán)境,如極寒、高海拔地區(qū)具有廣闊應(yīng)用前景。近年來,中國在耐候鋼制造技術(shù)方面取得了快速發(fā)展和進(jìn)步,但耐候鋼結(jié)構(gòu)橋梁技術(shù)還處于起步階段。亟需探究外部腐蝕環(huán)境下多物理場作用對(duì)于耐候鋼結(jié)構(gòu)橋梁的耦合疲勞致?lián)p機(jī)理;提高鋼材的強(qiáng)度等級(jí)并發(fā)展高強(qiáng)度耐候鋼,進(jìn)一步推進(jìn)橋梁工程的輕質(zhì)、高強(qiáng)、大跨和耐久等多個(gè)維度的協(xié)同發(fā)展;結(jié)合高性能材料基礎(chǔ)理論研究成果和實(shí)際需求,發(fā)展適用的自動(dòng)化、智能化焊接技術(shù),推動(dòng)耐候鋼結(jié)構(gòu)橋梁產(chǎn)業(yè)化進(jìn)程。
2)對(duì)于鋼結(jié)構(gòu)橋梁疲勞失效機(jī)理等基礎(chǔ)科學(xué)問題的研究,下一階段可從如下幾個(gè)方面開展研究工作:① 引入先進(jìn)的試驗(yàn)檢測技術(shù),闡明疲勞裂紋萌生和擴(kuò)展過程的微觀和介觀機(jī)制,明確關(guān)鍵影響因素對(duì)于疲勞性能的效應(yīng)機(jī)理;② 進(jìn)一步發(fā)展評(píng)估方法,將當(dāng)前的宏觀尺度唯象學(xué)評(píng)估方法向介觀和微觀尺度拓展,研究并發(fā)展適用的疲勞抗力評(píng)估新理論、新指標(biāo)和新方法;③ 將研究對(duì)象和評(píng)估方法由特定的構(gòu)造細(xì)節(jié)和特定的疲勞開裂模式拓展至結(jié)構(gòu)體系,進(jìn)一步完善結(jié)構(gòu)體系的疲勞抗力評(píng)估方法;④ 揭示腐蝕等環(huán)境因素的疲勞性能效應(yīng)機(jī)制,闡明服役過程構(gòu)造細(xì)節(jié)和結(jié)構(gòu)體系的主導(dǎo)疲勞開裂模式遷移機(jī)理;⑤ 充分考慮制造和服役全過程的疲勞性能影響因素并量化其實(shí)際效應(yīng),構(gòu)建面向疲勞性能的鋼結(jié)構(gòu)橋梁全壽命過程全息模擬和預(yù)測理論與方法。
3)在鋼結(jié)構(gòu)橋梁疲勞損傷監(jiān)測與檢測方面,當(dāng)前仍主要以人工巡檢的方式對(duì)在役鋼結(jié)構(gòu)橋梁疲勞裂紋進(jìn)行定期檢測,工作強(qiáng)度大、效率低且局限性問題突出,難以取得較好的檢測效果。為克服人工巡檢的弊端、保障鋼結(jié)構(gòu)橋梁的服役安全和服役質(zhì)量,亟需發(fā)展橋梁檢測新技術(shù),實(shí)現(xiàn)鋼結(jié)構(gòu)橋梁損傷狀態(tài)的實(shí)時(shí)智能監(jiān)測和檢測。由于鋼結(jié)構(gòu)橋梁的疲勞行為屬于典型的局部微小區(qū)域剛度退化行為,對(duì)高冗余度鋼結(jié)構(gòu)橋梁整體剛度的影響極小,傳統(tǒng)的監(jiān)測或檢測技術(shù)難以實(shí)現(xiàn)對(duì)于疲勞開裂早期微小裂紋的準(zhǔn)確檢測。發(fā)展針對(duì)鋼結(jié)構(gòu)橋梁疲勞微裂紋的智能化監(jiān)測與檢測方法,研究并建立鋼結(jié)構(gòu)橋梁疲勞損傷的智能監(jiān)測與檢測系統(tǒng),是下階段的關(guān)鍵研究課題。
4)在鋼結(jié)構(gòu)橋梁疲勞加固與維護(hù)方面,當(dāng)前關(guān)于加固方法及加固體系疲勞性能的研究仍極為欠缺:① 當(dāng)前的研究對(duì)象主要是非貫穿型疲勞裂紋,對(duì)于實(shí)橋中大量存在的貫穿型長大疲勞裂紋加固方法的研究仍較為欠缺;② 鋼結(jié)構(gòu)橋梁的疲勞開裂加固屬于含裂紋加固體系的多路徑、多模式體系疲勞問題,其疲勞破壞過程屬于協(xié)同受力性能劣化與疲勞累積損傷演化的耦合過程,只有闡明關(guān)鍵疲勞易損部位疲勞開裂與加固體系協(xié)同受力性能劣化的耦合機(jī)理,才能夠?qū)崿F(xiàn)對(duì)裝配式加固體系疲勞問題的深刻認(rèn)識(shí),揭示加固方法的疲勞性能強(qiáng)化機(jī)理;③ 當(dāng)前亟需對(duì)加固體系進(jìn)行由構(gòu)造細(xì)節(jié)到結(jié)構(gòu)體系的多維度研究,確定加固體系的控制疲勞易損部位及其主導(dǎo)疲勞破壞模式,闡明疲勞損傷演化與協(xié)同受力性能劣化的耦合過程,提出基于協(xié)同受力性能劣化的剩余疲勞壽命評(píng)估方法,準(zhǔn)確評(píng)估加固體系的剩余疲勞壽命;④ 關(guān)于加固技術(shù)產(chǎn)業(yè)化的研究嚴(yán)重滯后于實(shí)際需求。亟需根據(jù)鋼結(jié)構(gòu)橋梁典型疲勞裂紋的擴(kuò)展特性,對(duì)已提出的多種鋼結(jié)構(gòu)橋梁疲勞開裂加固方法進(jìn)行深入研究,確定不同加固方法的適用范圍,在此基礎(chǔ)上,研發(fā)相應(yīng)的裝配化、規(guī)格化加固結(jié)構(gòu)產(chǎn)品并發(fā)展鋼結(jié)構(gòu)橋梁疲勞開裂快速加固成套體系。參考文獻(xiàn):
[1] 聶建國. 我國結(jié)構(gòu)工程的未來: 高性能結(jié)構(gòu)工程[J]. 土木工程學(xué)報(bào), 2016, 49(9): 1-8.
NIE J G. The future of structural engineering in China: High-performance structural engineering [J]. China Civil Engineering Journal, 2016, 49(9): 1-8.(in Chinese)
[2] 周緒紅, 朋茜, 秦鳳江, 等. 鋼橋面板頂板與縱肋連接焊根位置疲勞損傷特征[J]. 交通運(yùn)輸工程學(xué)報(bào), 2018, 18(1): 1-12.
ZHOU X H, PENG X, QIN F J, et al. Fatigue damage characteristics of rib-to-deck weld root on orthotropic steel bridge deck [J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 1-12.(in Chinese)
[3] 朋茜, 周緒紅, 狄謹(jǐn), 等. 鋼橋面板縱肋與橫隔板連接位置疲勞損傷特征[J]. 中國公路學(xué)報(bào), 2018, 31(11): 78-90.
PENG X, ZHOU X H, DI J, et al. Fatigue damage characteristics of rib-to-diaphragm joints in orthotropic steel deck [J]. China Journal of Highway and Transport, 2018, 31(11): 78-90.(in Chinese)
[4] 高宗余, 阮懷圣, 秦順全, 等. 我國海洋橋梁工程技術(shù)發(fā)展現(xiàn)狀、挑戰(zhàn)及對(duì)策研究[J]. 中國工程科學(xué), 2019, 21(3): 1-4.
GAO Z Y, RUAN H S, QIN S Q, et al. Technical status, challenges, and solutions of marine bridge engineering [J]. Engineering Science, 2019, 21(3): 1-4.(in Chinese)
[5] 張喜剛, 田雨, 陳艾榮. 多災(zāi)害作用下橋梁設(shè)計(jì)方法研究綜述[J]. 中國公路學(xué)報(bào), 2018, 31(9): 7-19.
ZHANG X G, TIAN Y, CHEN A R. Review of bridge design method for multiple hazards [J]. China Journal of Highway and Transport, 2018, 31(9): 7-19.(in Chinese)
[6] 張清華, 卜一之, 李喬. 正交異性鋼橋面板疲勞問題的研究進(jìn)展[J]. 中國公路學(xué)報(bào), 2017, 30(3): 14-30, 39.
ZHANG Q H, BU Y Z, LI Q. Review on fatigue problems of orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39.(in Chinese)
[7] 王春生, 張靜雯, 段蘭, 等. 長壽命高性能耐候鋼橋研究進(jìn)展與工程應(yīng)用[J]. 交通運(yùn)輸工程學(xué)報(bào), 2020, 20(1): 1-26.
WANG C S, ZHANG J W, DUAN L, et al. Research progress and engineering application of long lasting high performance weathering steel bridges [J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. (in Chinese)
[8] 張清華, 李俊, 郭亞文, 等. 正交異性鋼橋面板結(jié)構(gòu)體系的疲勞破壞模式和抗力評(píng)估[J]. 土木工程學(xué)報(bào), 2019, 52(1): 71-81.
ZHANG Q H, LI J, GUO Y W, et al. Fatigue failure modes and resistance evaluation of orthotropic steel bridge deck structural system [J]. China Civil Engineering Journal, 2019, 52(1): 71-81.(in Chinese)
[9] LEONETTI D, MALJAARS J, SNIJDER H H. Probabilistic fatigue resistance model for steel welded details under variable amplitude loading - Inference and uncertainty estimation [J]. International Journal of Fatigue, 2020, 135: 105515.
[10] 鄭凱鋒, 衡俊霖, 何小軍, 等. 厚邊U肋正交異性鋼橋面的疲勞性能[J]. 西南交通大學(xué)學(xué)報(bào), 2019, 54(4): 694-700.
ZHENG K F, HENG J L, HE X J, et al. Fatigue performance of orthotropic steel decks with thickened edge U-ribs [J]. Journal of Southwest Jiaotong University, 2019, 54(4): 694-700. (in Chinese)
[11] LI D T, ZHANG C G, LU P M. Fatigue property and improvement of a rounded welding region between the diaphragm plate and closed rib of an orthotropic steel bridge deck [J]. Metals, 2020, 10(2): 161.
[12] 李杰. 工程結(jié)構(gòu)整體可靠性分析研究進(jìn)展[J]. 土木工程學(xué)報(bào), 2018, 51(8): 1-10.
LI J. Advances in global reliability analysis of engineering structures [J]. China Civil Engineering Journal, 2018, 51(8): 1-10.(in Chinese)
[13] 李游, 李傳習(xí), 陳卓異, 等. 基于監(jiān)測數(shù)據(jù)的鋼箱梁U肋細(xì)節(jié)疲勞可靠性分析[J]. 工程力學(xué), 2020, 37(2): 111-123.
LI Y, LI C X, CHEN Z Y, et al. Fatigue reliability analysis of U-rib detail of steel box girder based on monitoring data [J]. Engineering Mechanics, 2020, 37(2): 111-123. (in Chinese)
[14] 鄧揚(yáng), 李愛群. 基于斷裂力學(xué)和長期監(jiān)測數(shù)據(jù)的鋼箱梁橋頂板U肋焊縫疲勞可靠度分析[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 49(1): 68-75.
DENG Y, LI A Q. Fatigue reliability analysis for welds of U ribs in steel box girders based on fracture mechanics and long-term monitoring data [J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 68-75. (in Chinese)
[15] 卜一之, 金正凱, 黃云, 等. 鋼橋面板縱肋頂板焊縫疲勞裂紋擴(kuò)展的關(guān)鍵影響因素[J]. 中國公路學(xué)報(bào), 2019, 32(9): 61-70.
BU Y Z, JIN Z K, HUANG Y, et al. Key influencing factors of fatigue crack propagation in rib-to-deck welded joints of orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2019, 32(9): 61-70.(in Chinese)
[16] 張清華, 郭亞文, 李俊, 等. 鋼橋面板縱肋雙面焊構(gòu)造疲勞裂紋擴(kuò)展特性研究[J]. 中國公路學(xué)報(bào), 2019, 32(7): 49-56, 110.
ZHANG Q H, GUO Y W, LI J, et al. Fatigue crack propagation characteristics of double-sided welded joints between steel bridge decks and longitudinal ribs [J]. China Journal of Highway and Transport, 2019, 32(7): 49-56, 110.(in Chinese)
[17] 黃云, 張清華, 郭亞文, 等. 鋼橋面板縱肋與橫隔板焊接細(xì)節(jié)表面缺陷及疲勞效應(yīng)研究[J]. 工程力學(xué), 2019, 36(3): 203-213, 223.
HUANG Y, ZHANG Q H, GUO Y W, et al. Research on surface defects and fatigue effects at rib-to-crossbeam welded joints of orthotropic steel bridge decks [J]. Engineering Mechanics, 2019, 36(3): 203-213, 223.(in Chinese)
[18] CUI C, ZHANG Q H, BAO Y, et al. Fatigue life evaluation of welded joints in steel bridge considering residual stress [J]. Journal of Constructional Steel Research, 2019, 153: 509-518.
[19] 衛(wèi)星, 揭志羽, 廖曉璇, 等. 鋼結(jié)構(gòu)橋梁焊接節(jié)點(diǎn)腐蝕疲勞研究進(jìn)展[J]. 鋼結(jié)構(gòu), 2019, 34(1): 108-112.
WEI X, JIE Z Y, LIAO X X, et al. Review and considerations on corrosion fatigue of welded joints of steel bridge [J]. Steel Construction, 2019, 34(1): 108-112.(in Chinese)
[20] JIE Z Y, LI Y D, WEI X, et al. Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics [J]. Journal of Constructional Steel Research, 2018, 148: 542-550.
[21] MACHO M, RYJAEK P, MATOS J. Fatigue life analysis of steel riveted rail bridges affected by corrosion [J]. Structural Engineering International, 2019, 29(4): 551-562.
[22] RASOLI Z, NAGATA K, MIYAWAKI Y, et al. Study on evaluation of corrosion environment on steel bridges using inverse distance weighting method [J]. Journal of Structural Engineering, 2019, 65: 479-491.
[23] 鄭凱鋒, 張宇, 衡俊霖, 等. 高強(qiáng)度耐候鋼及其在橋梁中的應(yīng)用與前景[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2020, 52(3): 1-10.
ZHENG K F, ZHANG Y, HENG J L. High strength weathering steel and its application and prospect in bridge engineering [J]. Journal of Harbin Institute of Technology, 2020, 52(3): 1-10. (in Chinese)
[24] HUANG Y, ZHANG Q H, BAO Y, et al. Fatigue assessment of longitudinal rib-to-crossbeam welded joints in orthotropic steel bridge decks [J]. Journal of Constructional Steel Research, 2019, 159: 53-66.
[25] ZHU Z W, XIANG Z. Fatigue cracking investigation on diaphragm cutout in a self-anchored suspension bridge with orthotropic steel deck [J]. Structure and Infrastructure Engineering, 2019, 15(10): 1279-1291.
[26] LUO P J, ZHANG Q H, BAO Y, et al. Fatigue performance of welded joint between thickened-edge U-rib and deck in orthotropic steel deck [J]. Engineering Structures, 2019, 181: 699-710.
[27] WANG Q D, JI B H, FU Z Q, et al. Evaluation of crack propagation and fatigue strength of rib-to-deck welds based on effective notch stress method [J]. Construction and Building Materials, 2019, 201: 51-61.
[28] LI J, ZHANG Q H, BAO Y, et al. An equivalent structural stress-based fatigue evaluation framework for rib-to-deck welded joints in orthotropic steel deck [J]. Engineering Structures, 2019, 196: 109304.
[29] 王本勁, DE BACKER H, 陳艾榮. 正交異性鋼橋面板裂紋擴(kuò)展的均質(zhì)化方法[J]. 中國公路學(xué)報(bào), 2017, 30(3): 113-120, 158.
WANG B J, DE BACKER H, CHEN A R. A homogenization method on crack growth on orthotropic steel decks [J]. China Journal of Highway and Transport, 2017, 30(3): 113-120, 158.(in Chinese)
[30] WANG B J, ZHOU X Y, DE BACKER H, et al. Macro-crack initiation life for orthotropic steel decks considering weld heterogeneity and random traffic loading [J]. Structure and Infrastructure Engineering, 2017, 13(12): 1639-1652.
[31] SUN B, XU Y L, ZHU Q, et al. Auto-adaptive multiblock cycle jump algorithm for fatigue damage simulation of long-span steel bridges [J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(4)919-928
[32] SUN B, XU Y L, WANG F Y, et al. Multi-scale fatigue damage prognosis for long-span steel bridges under vehicle loading [J]. Structure and Infrastructure Engineering, 2019, 15(4): 524-538.
[33] 黃云. 基于概率斷裂力學(xué)的鋼橋面板構(gòu)造細(xì)節(jié)疲勞可靠度研究[D]. 成都: 西南交通大學(xué), 2019.
HUANG Y. Research on fatigue reliability of structural details in orthotropic steel decks based on probabilistic fracture mechanics [D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
[34] CUI C, XU Y L, ZHANG Q H, et al. Vehicle-induced fatigue damage prognosis of orthotropic steel decks of cable-stayed bridges [J]. Engineering Structures, 2020, 212: 110509.
[35] 賀拴海, 趙祥模, 馬建, 等. 公路橋梁檢測及評(píng)價(jià)技術(shù)綜述[J]. 中國公路學(xué)報(bào), 2017, 30(11): 63-80.
HE S H, ZHAO X M, MA J, et al. Review of highway bridge inspection and condition assessment [J]. China Journal of Highway and Transport, 2017, 30(11): 63-80.(in Chinese)
[36] RAGEH A, EFTEKHAR AZAM S, LINZELL D G. Steel railway bridge fatigue damage detection using numerical models and machine learning: Mitigating influence of modeling uncertainty [J]. International Journal of Fatigue, 2020, 134: 105458.
[37] WEI S Y, ZHANG Z H, LI S L, et al. Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors [J]. Smart Materials and Structures, 2017, 26(10): 104007.
[38] LI H N, YUAN C L, REN L, et al. Structural health-monitoring system for roof structure of the Dalian gymnasium [J]. Advances in Structural Engineering, 2019, 22(7): 1579-1590.
[39] PEI X Y, YI T H, LI H N. Dual-type sensor placement optimization by fully utilizing structural modal information: [J]. Advances in Structural Engineering, 2019, 22(3): 737-750.
[40] 孫利民, 尚志強(qiáng), 夏燁. 大數(shù)據(jù)背景下的橋梁結(jié)構(gòu)健康監(jiān)測研究現(xiàn)狀與展望[J]. 中國公路學(xué)報(bào), 2019, 32(11): 1-20.
SUN L M, SHANG Z Q, XIA Y. Development and prospect of bridge structural health monitoring in the context of big data [J]. China Journal of Highway and Transport, 2019, 32(11): 1-20. (in Chinese)
[41] SUN L M, SHANG Z Q, XIA Y, et al. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection [J]. Journal of Structural Engineering, 2020, 146(5): 04020073.
[42] 鮑躍全, 李惠. 人工智能時(shí)代的土木工程[J]. 土木工程學(xué)報(bào), 2019, 52(5): 1-11.
BAO Y Q, LI H. Artificial intelligence for civil engineering [J]. China Civil Engineering Journal, 2019, 52(5): 1-11. (in Chinese)
[43] 朱宏平, 翁順, 王丹生, 等. 大型復(fù)雜結(jié)構(gòu)健康精準(zhǔn)體檢方法[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2019, 40(2): 215-226.
ZHU H P, WENG S, WANG D S, et al. Precise structural health diagnosis of large-scale complex structures [J]. Journal of Building Structures, 2019, 40(2): 215-226.(in Chinese)
[44] XU J, DONG J H, LI H N, et al. Looseness monitoring of bolted spherical joint connection using electro-mechanical impedance technique and BP neural networks [J]. Sensors, 2019, 19(8): 1906.
[45] YIN T, ZHU H P. An efficient algorithm for architecture design of Bayesian neural network in structural model updating [J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(4)354-372
[46] YIN T, ZHU H P, FU S J. Model selection for dynamic reduction-based structural health monitoring following the Bayesian evidence approach [J]. Mechanical Systems and Signal Processing, 2019, 127: 306-327.
[47] BAO Y Q, TANG Z Y, LI H, et al. Computer vision and deep learning-based data anomaly detection method for structural health monitoring [J]. Structural Health Monitoring-An International Journal, 2019, 18(2): 401-421.
[48] XU Y, LI S L, ZHANG D Y, et al. Identification framework for cracks on a steel structure surface by a restricted boltzmann machines algorithm based on consumer-grade camera images [J]. Structural Control and Health Monitoring, 2018, 25(2): e2075.
[49] XU Y, BAO Y Q, CHEN J H, et al. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images [J]. Structural Health Monitoring, 2019, 18(3): 653-674.
[50] 鐘新谷, 彭雄, 沈明燕. 基于無人飛機(jī)成像的橋梁裂縫寬度識(shí)別可行性研究[J]. 土木工程學(xué)報(bào), 2019, 52(4): 52-61.
ZHONG X G, PENG X, SHEN M Y. Study on the feasibility of identifying concrete crack width with images acquired by unmanned aerial vehicles [J]. China Civil Engineering Journal, 2019, 52(4): 52-61.(in Chinese)
[51] 李子兵, 孫祥濤, 汪國華. 鋼結(jié)構(gòu)橋梁檢測方法簡述[J]. 工程與建設(shè), 2018, 32(5): 735-740.
LI Z B, SUN X T, WANG G H. Description of detection methods in steel bridges [J]. Engineering and Construction, 2018, 32(5): 735-740.(in Chinese)
[52] 王介修, 吉伯海, 袁周致遠(yuǎn), 等. 基于穿透法的鋼橋面板疲勞裂紋超聲波檢測方法研究[J]. 武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版), 2017, 41(6): 1022-1026.
WANG J X, JI B H, YUANZHOU Z Y, et al. Ultrasonic testing method research on fatigue cracks in steel bridge decks based on penetration method [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(6): 1022-1026.(in Chinese)
[53] NOWAK M, LYASOTA I, KISAA D. Testing the node of a railway steel bridge using an acoustic emission method [J]. Advances in Acoustic Emission Technology, 2017: 265-275. DOI:10.1007/978-3-319-29052-2_23.
[54] 何燕, 周楚淮, 羅杰. 橋梁鋼絞線斷絲聲發(fā)射監(jiān)測應(yīng)用研究[J]. 公路交通科技(應(yīng)用技術(shù)版), 2019, 15(2): 236-237.
HE Y, ZHOU C H, LUO J. Application of acoustic emission monitoring for broken wires of bridge steel strand [J]. Journal of Highway and Transportation Research and Development (Application Technical Edition), 2019, 15(2): 236-237. (in Chinese)
[55] 溫宇立, 武靜, 林榮, 等. 基于Lorenz系統(tǒng)Lyapunov指數(shù)的管道超聲導(dǎo)波檢測[J]. 振動(dòng)與沖擊, 2019, 38(11): 264-270.
WEN Y L, WU J, LIN R, et al. Ultrasonic guided wave detection in a pipeline based on Lyapunov exponent of Lorenz system [J]. Journal of Vibration and Shock, 2019, 38(11): 264-270. (in Chinese)
[56] BAO Y Q, CHEN Z C, WEI S Y, et al. The state of the art of data science and engineering in structural health monitoring [J]. Engineering, 2019, 5(2): 234-242.
[57] MEGID W A, CHAINEY M A, LEBRUN P, et al. Monitoring fatigue cracks on eyebars of steel bridges using acoustic emission: A case study [J]. Engineering Fracture Mechanics, 2019, 211: 198-208.
[58] AL-SALIH H, JUNO M, COLLINS W, et al. Evaluation of a digital image correlation bridge inspection methodology on complex distortion-induced fatigue cracking [J]. Procedia Structural Integrity, 2019, 17: 682-689.
[59] 鐘繼衛(wèi), 王波, 王翔, 等. 橋梁智能檢測技術(shù)研究與應(yīng)用[J]. 橋梁建設(shè), 2019, 49(Sup1): 1-6.
ZHONG J W, WANG B, WANG X, et al. Research of bridge intelligent inspection technology and application [J]. Bridge Construction, 2019, 49(Sup1): 1-6.(in Chinese)
[60] 張清華, 崔闖, 魏川, 等. 鋼橋面板疲勞損傷智能監(jiān)測與評(píng)估系統(tǒng)研究[J]. 中國公路學(xué)報(bào), 2018, 31(11): 66-77, 112.
ZHANG Q H, CUI C, WEI C, et al. Research on intelligent monitoring and assessment system for fatigue damage of orthotropic steel deck structural system [J]. China Journal of Highway and Transport, 2018, 31(11): 66-77, 112.(in Chinese)
[61] YAO Y, JI B H, FU Z Q, et al. Optimization of stop-hole parameters for cracks at diaphragm-to-rib weld in steel bridges [J]. Journal of Constructional Steel Research, 2019, 162: 105747.
[62] YUANZHOU Z Y, JI B H, FU Z Q, et al. Fatigue crack retrofitting by closing crack surface [J]. International Journal of Fatigue, 2019, 119: 229-237.
[63] KINOSHITA K, BANNO Y, ONO Y, et al. Fatigue strength improvement and fatigue crack closure by portable pneumatic needle-peening treatment on welded joints [J]. International Journal of Steel Structures, 2019, 19(3): 693-703.
[64] TONG L W, YU Q T, ZHAO X L. Experimental study on fatigue behavior of butt-welded thin-walled steel plates strengthened using CFRP sheets [J]. Thin-Walled Structures, 2020, 147: 106471.
[65] WANG C S, WANG Y Z, DUAN L, et al. Fatigue performance evaluation and cold reinforcement for old steel bridges [J]. Structural Engineering International, 2019, 29(4): 563-569.
[66] LIU J, GUO T, FENG D M, et al. Fatigue performance of rib-to-deck joints strengthened with FRP angles [J]. Journal of Bridge Engineering, 2018, 23(9): 04018060.
[67] 陳卓異, 李傳習(xí), 柯璐, 等. 某懸索橋鋼箱梁疲勞病害及處治方法研究[J]. 土木工程學(xué)報(bào), 2017, 50(3): 91-100.
CHEN Z Y, LI C X, KE L, et al. Study on fatigue damages and retrofit methods of steel box girder in a suspension bridge [J]. China Civil Engineering Journal, 2017, 50(3): 91-100.(in Chinese)
[68] AL-AZZAWI Z, STRATFORD T, ROTTER M, et al. FRP strengthening of web panels of steel plate girders against shear buckling Part-I: Static series of tests [J]. Composite Structures, 2018, 206: 722-738.
[69] AL-AZZAWI Z, STRATFORD T, ROTTER M, et al. FRP strengthening of web panels of steel plate girders against shear buckling. Part-II: Fatigue study and cyclic series of tests [J]. Composite Structures, 2019, 210: 82-95.
[70] IZADI M, MOTAVALLI M, GHAFOORI E. Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections [J]. Construction and Building Materials, 2019, 227: 116800.
[71] YUAN Y, WU C, JIANG X. Experimental study on the fatigue behavior of the orthotropic steel deck rehabilitated by UHPC overlay [J]. Journal of Constructional Steel Research, 2019, 157: 1-9.
[72] WANG S L, KE Z T, GAO Y, et al. Long-term in situ performance investigation of orthotropic steel bridge deck strengthened by SPS and RPC solutions [J]. Journal of Bridge Engineering, 2019, 24(6): 04019054.
[73] TEIXEIRA DE FREITAS S, KOLSTEIN H, BIJLAARD F. Fatigue assessment of full-scale retrofitted orthotropic bridge decks [J]. Journal of Bridge Engineering, 2017, 22(11): 04017092.
[74] KINOSHITA K, BANNO Y, ONO Y, et al. Fatigue strength improvement of welded joints of existing steel bridges by shot-peening [J]. International Journal of Steel Structures, 2019, 19(2): 495-503.
[75] 卜一之, 金通, 李俊, 等. 縱肋與橫隔板交叉構(gòu)造細(xì)節(jié)穿透型疲勞裂紋擴(kuò)展特性及其加固方法研究[J]. 工程力學(xué), 2019, 36(6): 211-218.
BU Y Z, JIN T, LI J, et al. Research on propagation characteristics and reinforcement method of penetrating crack at rib-to-diaphragm welded joints in steel bridge deck [J]. Engineering Mechanics, 2019, 36(6): 211-218.(in Chinese)
[76] 張清華, 李俊, 卜一之, 等. 正交異性鋼橋面板縱肋與橫隔板交叉構(gòu)造細(xì)節(jié)疲勞開裂快速加固方法[J]. 中國公路學(xué)報(bào), 2018, 31(12): 124-133.
ZHANG Q H, LI J, BU Y Z, et al. Rapid reinforcement approach for the fatigue cracking of longitudinal rib-to-diaphragm detail in orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2018, 31(12): 124-133.(in Chinese)
(編輯 胡玲)