肖志新 宋立梅 謝俊霞 徐華敏
[摘要]目的 探究枸櫞酸鐵銨(FAC)、含鐵鐵蛋白(Ferritin)和去鐵鐵蛋白(Apoferritin)對原代培養(yǎng)的腹側(cè)中腦神經(jīng)元中單胺囊泡轉(zhuǎn)運(yùn)蛋白-2(VMAT-2)和多巴胺轉(zhuǎn)運(yùn)蛋白(DAT)表達(dá)的影響。方法 以FAC、Ferritin和Apoferritin處理原代培養(yǎng)的腹側(cè)中腦神經(jīng)元24 h后,應(yīng)用蛋白質(zhì)免疫印跡(Western Blot)方法檢測神經(jīng)元中VMAT-2和DAT的表達(dá)情況。結(jié)果 FAC、Ferritin和Apoferritin處理的原代腹側(cè)中腦神經(jīng)元VMAT-2表達(dá)較對照組明顯降低,差異具有統(tǒng)計(jì)學(xué)意義(F=4.295,P<0.05),而DAT的表達(dá)沒有明顯變化。結(jié)論 FAC、Ferritin和Apoferritin能夠降低原代培養(yǎng)的腹側(cè)中腦神經(jīng)元的VMAT-2表達(dá),而對DAT表達(dá)沒有明顯影響。
[關(guān)鍵詞]鐵;鐵蛋白質(zhì)類;中腦;神經(jīng)元;囊泡單胺轉(zhuǎn)運(yùn)蛋白質(zhì)類;多巴胺質(zhì)膜轉(zhuǎn)運(yùn)蛋白質(zhì)類
[中圖分類號(hào)]R338.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]2096-5532(2021)02-0194-04
[ABSTRACT]Objective To investigate the effect of ferric ammonium citrate (FAC), Ferritin, and Apoferritin on the expression of vesicular monoamine transporter 2 (VMAT-2) and dopamine transporter (DAT) in primary cultured ventral midbrain neurons.Methods After primary cultured ventral midbrain neurons were treated with FAC, Ferritin, or Apoferritin for 24 h, Western blot was used to measure the expression of VMAT-2 and DAT in neurons.?Results Compared with the control group, the group of primary cultured ventral midbrain neurons treated by FAC, Ferritin, or Apoferritin had a significant reduction in the expression of VMAT-2 (F=4.295,P<0.05), while there was no significant change in the expression of DAT.?Conclusion FAC, Ferritin, and Apoferritin can reduce the expression of VMAT-2 in primary cultured ventral midbrain neurons, with no significant effect on the expression of DAT.
[KEY WORDS]iron; ferritins; mesencephalon; neurons; vesicular monoamine transport proteins; dopamine plasma membrane transport proteins
帕金森?。≒D)是第二大常見的神經(jīng)系統(tǒng)退行性疾病,主要臨床表現(xiàn)有運(yùn)動(dòng)遲緩、靜止性震顫、姿勢反射障礙等[1-3]。其病理性特征是黑質(zhì)(SN)多巴胺(DA)能神經(jīng)元進(jìn)行性缺失[4]。迄今為止PD的病因尚未完全闡明,越來越多的證據(jù)表明,SN鐵的過度沉積可能是PD發(fā)病的關(guān)鍵因素之一[5-13]。SN鐵增加會(huì)產(chǎn)生活性氧和活性氮物質(zhì),刺激細(xì)胞內(nèi)α-突觸核蛋白形成,導(dǎo)致DA能神經(jīng)元變性[14-15]。在腦內(nèi)鐵主要與鐵蛋白結(jié)合,鐵蛋白是一種可儲(chǔ)存多達(dá)4 500個(gè)鐵原子的蛋白質(zhì)[16-17],有含鐵鐵蛋白(Ferritin)和去鐵鐵蛋白(Apoferritin)兩種形式[18]。有研究表明,鐵蛋白可能不僅是細(xì)胞內(nèi)的鐵儲(chǔ)存者,也可能是參與組織和全身鐵調(diào)控的重要因素[19]。但鐵蛋白在DA穩(wěn)態(tài)中起的作用尚不明確。
單胺囊泡轉(zhuǎn)運(yùn)蛋白-2(VMAT-2)是位于DA能神經(jīng)元突觸囊泡的一種膜蛋白,可以將胞漿內(nèi)游離的DA轉(zhuǎn)運(yùn)到囊泡內(nèi),并調(diào)節(jié)隨后的釋放。它通過向單胺能神經(jīng)元傳遞DA小泡來保護(hù)DA能神經(jīng)元[20]。多巴胺轉(zhuǎn)運(yùn)蛋白(DAT)在SN神經(jīng)元胞體和樹突中大量表達(dá)[21-23],可將DA從細(xì)胞外迅速轉(zhuǎn)運(yùn)到突觸前神經(jīng)元胞質(zhì)內(nèi),以維持細(xì)胞內(nèi)外DA穩(wěn)態(tài)。但是在高鐵以及存在外源性鐵蛋白的狀態(tài)下,原代培養(yǎng)腹側(cè)中腦神經(jīng)元中VMAT-2和DAT的表達(dá)是否改變尚不清楚。本實(shí)驗(yàn)旨在探究高鐵、Ferritin和Apoferritin對原代培養(yǎng)的腹側(cè)中腦神經(jīng)元VMAT-2和DAT表達(dá)的影響?,F(xiàn)將實(shí)驗(yàn)結(jié)果報(bào)告如下。
1 材料與方法
1.1 實(shí)驗(yàn)材料
原代培養(yǎng)的腹側(cè)中腦神經(jīng)元細(xì)胞(取自孕14 d的Wistar大鼠的胎鼠腹側(cè)中腦),DMEM/F12培養(yǎng)液、2.5 g/L的胰酶(美國Hyclone公司),B27營養(yǎng)因子、胎牛血清(美國Gibco公司),青霉素-鏈霉素溶液(100×,中國索萊寶科技有限公司),D-多聚賴氨酸、枸櫞酸鐵銨(FAC)、Ferritin、Apoferritin(美國Sigma公司),VMAT-2抗體和DAT抗體(中國上海Abcam公司),ECL發(fā)光液(Millipore公司)。
1.2 原代腹側(cè)中腦神經(jīng)元的培養(yǎng)
實(shí)驗(yàn)前將實(shí)驗(yàn)器械進(jìn)行高壓處理,提前3 h用D-多聚賴氨酸鋪培養(yǎng)板,以高壓滅菌水清洗3次放置超凈臺(tái)內(nèi)備用。將孕14 d的Wistar大鼠以聯(lián)合麻醉藥深度麻醉后,用體積分?jǐn)?shù)0.75的乙醇進(jìn)行腹部消毒,沿中線剪開,取出串珠樣胚胎,放置在預(yù)冷的DMEM/F12培養(yǎng)液中。將胚胎移至超凈臺(tái)中顯微鏡下,在冰上操作,剖開胚胎外膜取出胎鼠置于另一裝有DMEM/F12培養(yǎng)液的玻璃皿中。使用眼科鑷、眼科剪將中腦部分取出,去除端腦及血管膜,修剪組織留出蝴蝶狀的腹側(cè)中腦,將其轉(zhuǎn)移至含預(yù)冷DMEM/F12培養(yǎng)液的玻璃皿中。去除DMEM/F12培養(yǎng)液,加入37 ℃預(yù)溫的2.5 g/L胰酶,在培養(yǎng)箱中消化5 min。加入含有胎牛血清的終止液終止消化。用移液器將組織吹打成單細(xì)胞懸液,用藍(lán)槍頭吹打約10次,收集單細(xì)胞懸液至50 mL離心管中,后套用黃槍頭和白槍頭重復(fù)上述操作。將裝有單細(xì)胞懸液的離心管以1 000 r/min離心5 min。棄上清,加入含有B27和雙抗的DMEM/F12培養(yǎng)液,用吸管吹打成細(xì)胞懸液,以2×108/L的密度種板。此后每隔2 d換1次液,第6天細(xì)胞成熟可用于實(shí)驗(yàn)。
1.3 實(shí)驗(yàn)分組及處理
實(shí)驗(yàn)分為對照組、FAC處理組、Ferritin處理組和Apoferritin處理組,將原代培養(yǎng)的腹側(cè)中腦神經(jīng)元培養(yǎng)液換成DMEM/F12基礎(chǔ)培養(yǎng)液,對照組細(xì)胞只用DMEM/F12基礎(chǔ)培養(yǎng)液孵育,F(xiàn)AC處理組細(xì)胞加入100 μmol/L的FAC,F(xiàn)erritin處理組細(xì)胞加入80 μmol/L的Ferritin,Apoferritin處理組細(xì)胞加入50 μmol/L的Apoferritin。將各組細(xì)胞置于37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱中孵育24 h。
1.4 VMAT-2和DAT的蛋白免疫印跡(Western Blot)檢測
在6孔板中加入100 μL蛋白裂解液,冰上裂解30 min,用刮板將板底的細(xì)胞刮下,用移液器轉(zhuǎn)移至1.5 mL的EP管中,在4 ℃下以12 000 r/min離心20 min。用移液器吸取80 μL上清至另一EP管中,使用BCA試劑盒檢測上清中蛋白質(zhì)濃度,加入5×Loading Buffer,95 ℃煮5 min。按照BCA試劑盒檢測的蛋白濃度計(jì)算SDS-PAGE凝膠電泳的上樣量。加入樣品后,調(diào)節(jié)電壓至80 V,待樣品進(jìn)入分離膠后,將電壓調(diào)至120 V,電泳之后將蛋白轉(zhuǎn)至PVDF膜上,以300 mA濕轉(zhuǎn)90 min,切下所需分子量的條帶,用含50 g/L脫脂奶粉的TBST室溫封閉2 h后,再加入用含50 g/L脫脂奶粉的TBST稀釋的VMAT-2抗體(稀釋度為1∶1 000)、DAT抗體(稀釋度為1∶1 000)和β-actin抗體(稀釋度為1∶10 000)孵育相應(yīng)的條帶,4 ℃搖床過夜。用TBST洗條帶3次,每次10 min,加入HRP偶聯(lián)的山羊抗兔二抗(稀釋度為1∶10 000),室溫孵育1 h,孵育完成后以TBST洗3次,每次10 min。加ECL發(fā)光液避光孵育1 min顯影。利用Image J軟件對條帶進(jìn)行分析,以目的條帶與內(nèi)參照條帶的比值作為目的蛋白的相對含量。
1.5 統(tǒng)計(jì)學(xué)處理
應(yīng)用GraphPad Prism 5.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,計(jì)量資料結(jié)果以x2±s的形式表示,多組比較采用單因素方差分析(One way ANOVA檢驗(yàn)),并繼以Tukey法進(jìn)行組間兩兩比較,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 FAC、Ferritin和Apoferritin對原代培養(yǎng)的腹側(cè)中腦神經(jīng)元VMAT-2表達(dá)的影響
對照組、FAC處理組、Ferritin處理組和Apoferritin處理組細(xì)胞內(nèi)的VMAT-2蛋白表達(dá)水平分別為1.175±0.075、0.938±0.044、0.945±0.046和0.921±0.062(n=17)。與對照組相比,F(xiàn)AC處理組、Ferritin處理組和Apoferritin處理組VMAT-2蛋白表達(dá)水平明顯降低,差異具有統(tǒng)計(jì)學(xué)意義(F=4.295,q=3.952~4.370,P<0.05),而Ferritin處理組與Apoferritin處理組相比差異無顯著意義(q=0.417,P>0.05)。
2.2 FAC、Ferritin和Apoferritin對原代培養(yǎng)的腹側(cè)中腦神經(jīng)元DAT表達(dá)的影響
對照組、FAC處理組、Ferritin處理組和Apoferritin處理組細(xì)胞內(nèi)DAT蛋白表達(dá)水平分別為0.910±0.055、0.931±0.679、0.937±0.056、0.958±0.088(n=12),各組間比較,差異均無顯著性(F=0.084,q=0.297~0.706,P>0.05)。
3 討 論
PD是全球第二大神經(jīng)退行性疾病,其發(fā)病與年齡老化、氧化應(yīng)激、炎癥反應(yīng)、環(huán)境因素、遺傳因素等有關(guān)。越來越多的證據(jù)表明,SN鐵過度沉積參與了PD的發(fā)病,過多的鐵激活的小膠質(zhì)細(xì)胞會(huì)釋放大量的神經(jīng)炎性因子,增加了DA能神經(jīng)元的變性[24]。在腦內(nèi),鐵主要與鐵蛋白結(jié)合,鐵蛋白兩種亞型以互補(bǔ)的方式儲(chǔ)存細(xì)胞內(nèi)的鐵[25]。
有研究提出DA作用的區(qū)域概念,VMAT-2和DAT在調(diào)節(jié)這些區(qū)域之間DA轉(zhuǎn)移中起著核心作用[26-27]。VMAT-2將突觸前神經(jīng)元合成的DA攝取到突觸囊泡中,釋放到突觸間隙,從而作用到相應(yīng)的受體。而DAT可以將突觸間隙的DA重新攝取到突觸前神經(jīng)元。它們共同調(diào)節(jié)DA活性,從而改變DA的含量[28]。本文研究結(jié)果顯示,給予高鐵會(huì)導(dǎo)致原代培養(yǎng)的腹側(cè)中腦神經(jīng)元的VMAT-2表達(dá)降低。有實(shí)驗(yàn)研究表明,當(dāng)VMAT-2水平降低約95%時(shí),小鼠表現(xiàn)為DA穩(wěn)態(tài)失調(diào),而且神經(jīng)元對多種有毒化合物的敏感性增強(qiáng)[29-34]。這提示高鐵導(dǎo)致的VMAT-2表達(dá)降低可能影響了DA的釋放,從而引起DA穩(wěn)態(tài)失調(diào)。本文結(jié)果還顯示,給予鐵蛋白后,細(xì)胞VMAT-2的表達(dá)也會(huì)下降,說明腹側(cè)中腦神經(jīng)元VMAT-2的表達(dá)變化不是鐵依賴性的,鐵蛋白和鐵均可通過影響VMAT-2的表達(dá)參與DA穩(wěn)態(tài)調(diào)控。Western Blot結(jié)果顯示,經(jīng)高鐵及鐵蛋白處理的腹側(cè)中腦神經(jīng)元DAT的表達(dá)沒有發(fā)生明顯變化,提示高鐵及鐵蛋白并不影響DA重新攝取到突觸前神經(jīng)元。以上結(jié)果提示,高鐵及鐵蛋白能夠減少突觸前神經(jīng)元的DA釋放,但并不影響DAT介導(dǎo)的DA重新攝取,這就導(dǎo)致了DA的穩(wěn)態(tài)失調(diào),可能增加了神經(jīng)元對有毒物質(zhì)的敏感性。本實(shí)驗(yàn)以原代細(xì)胞為模型,更好地探究了高鐵誘導(dǎo)的DA代謝和轉(zhuǎn)運(yùn)情況,為開發(fā)影響DA穩(wěn)態(tài)的鐵螯合劑提供了新的依據(jù),也為PD的治療提供了新的思路。
[參考文獻(xiàn)]
[1]POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinsons disease[J]. Movement Di-sorders, 2015,30(12):1591-1601.
[2]KALIA L V, LANG A E. Parkinsons disease[J]. Lancet (London, England), 2015,386(9996):896-912.
[3]PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J]. Nature review Neuroscience, 2017,18(4):251-259.
[4]WIDNELL K. Pathophysiology of motor fluctuations in Parkinsons disease[J]. Movement Disorders, 2005,20(Suppl 11):S17-S22.
[5]PARIS I, MARTINEZ-ALVARADO P, CRDENAS S, et al. Dopamine-dependent iron toxicity in cells derived from rat hypothalamus[J]. Chemical Research in Toxicology, 2005,18(3):415-419.
[6]ZUCCA F A, SEGURA-AGUILAR J, FERRARI E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinsons disease[J]. Progress in Neurobio-logy, 2017,155:96-119.
[7]MOHANAKUMAR K P, DE BARTOLOMEIS A, WU R M, et al. Ferrous-citrate complex and nigral degeneration: evidence for free-radical formation and lipid peroxidation[J]. Annals of the New York Academy of Sciences, 1994,738:392-399.
[8]PARIS I, MARTINEZ-ALVARADO P, PEREZ-PASTENE C, et al. Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron toxicity in cells derived from the substantia nigra[J]. Journal of Neurochemistry, 2005,92(5):1021-1032.
[9]KE Y, QIAN Z M. Iron misregulation in the brain: a primary cause of neurodegenerative disorders[J]. The Lancet Neurology, 2003,2(4):246-253.
[10]OAKLEY A E, COLLINGWOOD J F, DOBSON J, et al. Individual dopaminergic neurons show raised iron levels in Parkinsons disease[J]. Neurology, 2007,68(21):1820-1825.
[11]JIANG H, SONG N, XU H, et al. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent[J]. Cell Research, 2010,20(3):345-356.
[12]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J]. The Lancet Neurology, 2014,13(10):2045-1060.
[13]AYTON S, LEI P. Nigral iron elevation is an invariable feature of Parkinsons disease and is a sufficient cause of neurodegeneration[J]. Biomed Res Int, 2014,2014:581256.
[14]DE FARIAS C C, MAES M, BONIFACIO K L, et al. Parkinsons disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways[J]. CNS & Neurological Disorders Drug Tar-gets, 2017,16(4):484-491.
[15]JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinsons disease[J]. Molecular Neurobiology, 2017,54(4):3078-3101.
[16]FRIEDMAN A, AROSIO P, FINAZZI D, et al. Ferritin as an important player in neurodegeneration[J]. Parkinsonism & Related Disorders, 2011,17(6):423-430.
[17]FISHER J, DEVRAJ K, INGRAM J, et al. Ferritin: a novel mechanism for delivery of iron to the brain and other organs[J]. American Journal of Physiology Cell Physiology, 2007,293(2):C641-C649.
[18]LINDER M C. Mobilization of stored iron in mammals: a review[J]. Nutrients, 2013,5(10):4022-4050.
[19]COHEN L A, GUTIERREZ L, WEISS A, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway[J]. Blood, 2010,116(9):1574-1584.
[20]SEGURA A, SULZER D, ZUCCA F A, et al. Overexpression of vesicular monoamine transporter-2 may block neurotoxic metabolites from cytosolic dopamine: a potential neuroprotective therapy for Parkinsons disease[J]. Clin Pharmacol Transl Med, 2019,3(1):143-148.
[21]HERSCH S M, YI H, HEILMAN C J, et al. Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra[J]. The Journal of Comparative Neurology, 1997,388(2):211-227.
[22]NIRENBERG M J, VAUGHAN R A, UHL G R, et al. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons[J]. The Journal of Neuroscience, 1996,16(2):436-447.
[23]VAUGHAN R A, FOSTER J D. Mechanisms of dopamine transporter regulation in normal and disease states[J]. Trends in Pharmacological Sciences, 2013,34(9):489-496.
[24]ZHANG W, YAN Z F, GAO J H, et al. Role and mechanism of microglial activation in iron-induced selective and progressive dopaminergic neurodegeneration[J]. Molecular Neurobio-logy, 2014,49(3):1153-1165.
[25]CONNOR J R, BOESHORE K L, BENKOVIC S A, et al. Isoforms of ferritin have a specific cellular distribution in the brain[J]. Journal of Neuroscience Research, 1994,37(4):461-465.
[26]GERMAN C L, BALADI M G, MCFADDEN L M, et al. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease[J]. Pharmacological Reviews, 2015,67(4):1005-1024.
[27]LOHR K M, MASOUD S T, SALAHPOUR A, et al. Membrane transporters as mediators of synaptic dopamine dyna-mics: implications for disease[J]. The European Journal of Neuroscience, 2017,45(1):20-33.
[28]SCHMITZ Y, BENOIT-MARAND M, GONON F, et al. Presynaptic regulation of dopaminergic neurotransmission[J]. Journal of Neurochemistry, 2003,87(2):273-289.
[29]FUMAGALLI F, GAINETDINOV R R, WANG Y M, et al. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice[J]. The Journal of Neuroscience, 1999,19(7):2424-2431.
[30]PIFL C, RAJPUT A, REITHER H, et al. Is Parkinsons di-sease a vesicular dopamine storge disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum[J]. J Neurosci, 2014,34(24):8210-8218.
[31]GAINETDINOV R R, FUMAGALLI F, WANG Y M, et al. Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice[J]. Journal of Neurochemistry, 1998,70(5):1973-1978.
[32]GUILLOT T S, SHEPHERD K R, RICHARDSON J R, et al. Reduced vesicular storage of dopamine exacerbates me-thamphetamine-induced neurodegeneration and astrogliosis[J]. Journal of Neurochemistry, 2008,106(5):2205-2217.
[33]LOHR K M, CHEN M, HOFFMAN C A, et al. Vesicular monoamine transporter 2 (VMAT2) level regulates MPTP vulnerability and clearance of excess dopamine in mouse striatal terminals[J]. Toxicological Sciences, 2016,153(1):79-88.
[34]UHL G R. Dopamine compartmentalization, selective dopa-minergic vulnerabilities in Parkinsons disease and therapeutic opportunities[J]. Annals of Clinical and Translational Neuro-logy, 2019,6(2):406-415.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年2期