孫浩然,任志貴,劉菊蓉,馮明豪,李佳豪
(陜西理工大學(xué)機(jī)械工程學(xué)院,陜西漢中 723000)
挖掘機(jī)器人是傳統(tǒng)挖掘機(jī)與互聯(lián)網(wǎng)、自動化控制和人工智能等技術(shù)深度融合的產(chǎn)物,相比于傳統(tǒng)挖掘機(jī),挖掘機(jī)器人作業(yè)環(huán)境的適用范圍更加廣闊。在挖掘機(jī)器人軌跡規(guī)劃中,常以能耗最優(yōu)、時間最優(yōu)、自主避障或軌跡光滑連續(xù)且振動沖擊小為目標(biāo)對挖掘軌跡進(jìn)行優(yōu)化,未考慮軌跡對機(jī)器人工作裝置性能的影響。鏟斗作為機(jī)器人任務(wù)執(zhí)行終端與作業(yè)對象直接接觸。復(fù)雜的作業(yè)對象產(chǎn)生了隨機(jī)變化的挖掘阻力,對鏟斗造成沖擊與振動,使鏟斗關(guān)鍵部位出現(xiàn)破損,學(xué)者們通常將由經(jīng)驗(yàn)公式、不同工況得到的挖掘阻力、液壓缸最大理論挖掘力或復(fù)合挖掘力作為載荷對鏟斗進(jìn)行強(qiáng)度分析。而鏟斗結(jié)構(gòu)優(yōu)化中,許莉鈞等以輕量化為目標(biāo),基于等強(qiáng)度理論對鏟斗板厚進(jìn)行了優(yōu)化;殷淑芳、尹開勤以降低鏟斗最大應(yīng)力為目標(biāo),在極端工況下使用SolidWorks優(yōu)化模塊對鏟斗進(jìn)行了強(qiáng)度優(yōu)化;沈振輝、楊拴強(qiáng)以鏟斗最大應(yīng)力不改變?yōu)榧s束條件,基于4種典型工況和Monte Carlo技術(shù)建立了挖掘機(jī)鏟斗輕量化方法;鄧子龍等以斗桿液壓缸力臂最大為危險工況,以滿足強(qiáng)度要求為前提對鏟斗質(zhì)量進(jìn)行了優(yōu)化;侯亞娟等以鏟斗截面周長與面積的比值為目標(biāo)函數(shù)建立了鏟斗質(zhì)量優(yōu)化數(shù)學(xué)模型。以上研究僅在理想狀態(tài)下,在某種工況下對鏟斗的工作性能進(jìn)行評價,未考慮挖掘軌跡對鏟斗強(qiáng)度的影響及如何在保證強(qiáng)度的前提下對鏟斗進(jìn)行輕量化設(shè)計(jì)。
因此,本文作者提出一種基于極限挖掘力的鏟斗輕量化設(shè)計(jì)方法。根據(jù)挖掘機(jī)器人實(shí)際挖掘過程選定了一條連續(xù)挖掘軌跡,對連續(xù)挖掘軌跡中液壓缸的極限挖掘力進(jìn)行計(jì)算,并將其作為外載荷對鏟斗的結(jié)構(gòu)強(qiáng)度進(jìn)行分析,建立了鏟斗結(jié)構(gòu)優(yōu)化模型,并使用枚舉法對鏟斗進(jìn)行優(yōu)化。
實(shí)際挖掘過程中,與挖掘機(jī)器人工作性能發(fā)揮關(guān)聯(lián)緊密的挖掘軌跡是由斗桿和鏟斗的相對夾角共同決定,不同的夾角可使工作裝置處于不同的位置,改變夾角便可得到不同的挖掘軌跡。地面以下是挖掘機(jī)器人的主要挖掘區(qū)域,在挖掘機(jī)器人設(shè)計(jì)之初便考慮主挖區(qū)對挖掘性能發(fā)揮的影響,因此,選擇主挖區(qū)內(nèi)的挖掘軌跡作為研究前提。基于連續(xù)挖掘軌跡理論,選擇的連續(xù)挖掘軌跡如圖1所示。
圖1 連續(xù)挖掘軌跡
軌跡的起點(diǎn)為,終點(diǎn)為,動臂與軸夾角為-10°,此過程中交替使用鏟斗液壓缸、斗桿液壓缸進(jìn)行挖掘。軌跡由、、、等4段分軌跡組成。軌跡中機(jī)構(gòu)夾角如表1所示,其中:角為動臂與水平面的相對夾角,角為斗桿與動臂的相對夾角,角為鏟斗與斗桿的相對夾角。
表1 工作裝置夾角 單位:(°)
學(xué)者們經(jīng)常將理論挖掘力作為研究前提,但在測驗(yàn)中得到的挖掘力往往大于理論挖掘力模型的計(jì)算結(jié)果,理論挖掘力無法代表挖掘機(jī)器人所能發(fā)揮出的真實(shí)的挖掘力。由學(xué)者提出并已驗(yàn)證的極限挖掘力計(jì)算模型可知,實(shí)際挖掘過程中鏟斗承受的是一個隨時變化的復(fù)雜力系。
不考慮側(cè)向力時,由于工作裝置的對稱性,該復(fù)雜力系可看作平面力系,將其合成為作用于鏟斗切削刃中間位置點(diǎn)的切向力、法向力和阻力矩,合稱為極限挖掘力,如圖2所示,其中,阻力系數(shù)=/、阻力矩系數(shù)=/,其中:阻力系數(shù)取值范圍為[-0.4,0.5],阻力矩系數(shù)取值范圍為[-0.4,0.2]。
圖2 極限挖掘力分布
不同的工裝姿態(tài)對應(yīng)不同的阻力系數(shù)和阻力矩系數(shù),同時對應(yīng)不同的切向力、法向力和阻力矩,并且極限挖掘力法向力和阻力矩是理論挖掘力模型所忽略的,因此,選擇極限挖掘力作為鏟斗外載荷較理論挖掘力更接近真實(shí)情況。鏟斗、斗桿液壓缸在4段軌跡中的極限挖掘力如圖3所示。
圖3 連續(xù)挖掘軌跡載荷
圖3(a)中:隨著減小,極限挖掘力的切向力、法向力和阻力矩曲線變化規(guī)律幾乎完全一致,隨著的減小而增大。圖3(b)中:極限挖掘力的切向力、阻力矩曲線變化規(guī)律完全一致,隨著的減小而增大;由于阻力系數(shù)的存在,極限挖掘力的法向力隨著的變化出現(xiàn)上下波動狀態(tài)。圖3(c)中:軌跡中,極限挖掘力的法向力和阻力矩曲線變化規(guī)律完全一致,波峰波谷對應(yīng)的數(shù)值一致,切向力變化規(guī)律與法向力、阻力矩相反。圖3(d)中:軌跡中,極限挖掘力的切向力、法向力和阻力矩曲線變化規(guī)律幾乎完全一致,隨著的減小而減小,法向力偶爾出現(xiàn)波動。極限挖掘力最大切向力出現(xiàn)在挖掘點(diǎn),此時,切向力=142.271 kN,法向力=-56.908 kN,阻力矩=-56.908 kN·m。
由于反鏟液壓挖掘機(jī)鏟斗的結(jié)構(gòu)形狀比較復(fù)雜,所以使用APDL語言對鏟斗建模和有限元分析過程進(jìn)行了參數(shù)化,并寫入命令流文件。根據(jù)需求對命令流程序中的零件結(jié)構(gòu)參數(shù)、材料參數(shù)、網(wǎng)格單元類型、載荷大小等參數(shù)進(jìn)行賦值計(jì)算,將命令流文件保存,然后運(yùn)行被賦值過的命令流文件。此過程實(shí)現(xiàn)了鏟斗有限元分析計(jì)算的自動化。
在建立鏟斗參數(shù)化模型過程中,在保留原鏟斗主要結(jié)構(gòu)、尺寸特征的前提下,為保證網(wǎng)格的順利劃分,建模之初就需忽略對有限元計(jì)算結(jié)果影響較小或者無影響的細(xì)節(jié),如斗底加強(qiáng)板、耳板形狀、斗齒的有無等?;诖嗽瓌t做如下簡化:(1)去除斗齒:將在鏟斗斗前壁板上直接施加載荷;(2)簡化耳板與背板:耳板、背板形狀不規(guī)則,易增加建模時間;(3)刪除側(cè)切削刃:由于載荷直接作用于斗唇上,側(cè)切削刃對鏟斗結(jié)構(gòu)強(qiáng)度影響較小,并且,此研究中的鏟斗結(jié)構(gòu)優(yōu)化是鏟斗基本形狀的優(yōu)化,不涉及側(cè)切削刃,因此,在建模時將其忽略。將鏟斗材料設(shè)置為Q345,建模完成后,可知鏟斗質(zhì)量為569.482 kg。使用命令流建立的鏟斗模型如圖4所示。
圖4 鏟斗三維模型
在鏟斗與斗桿的鉸點(diǎn)處施加全約束。對鏟斗施加載荷時,分別將各段軌跡中的極限挖掘力的切向力、法向力、阻力矩作為外載荷。為防止出現(xiàn)由于應(yīng)力集中而導(dǎo)致過大的計(jì)算誤差,將所受的集中力轉(zhuǎn)化為分布在多個節(jié)點(diǎn)的分力加載在斗齒的多個節(jié)點(diǎn)上。經(jīng)仿真計(jì)算可以得到各段軌跡中鏟斗應(yīng)力、變形隨鏟斗夾角、斗桿夾角變化的情況,如圖5所示。
圖5 鏟斗結(jié)構(gòu)強(qiáng)度
由圖5可知:鏟斗應(yīng)力、變形隨夾角的變化而變化。經(jīng)與圖3對比,鏟斗應(yīng)力與極限挖掘力切向力的變化趨勢一致;圖5中鏟斗變形主要趨勢與應(yīng)力變化情況基本相同,由于受極限挖掘力的法向力和阻力矩的影響,鏟斗變形隨夾角的變化趨勢偶爾出現(xiàn)波動,變形的波峰波谷出現(xiàn)位置與法向力拐點(diǎn)出現(xiàn)的位置相同。整條軌跡中,鏟斗處于挖掘點(diǎn)時的應(yīng)力、變形最大,此時,鏟斗夾角為150°,應(yīng)力、變形的具體情況如圖6所示。
圖6 挖掘點(diǎn)D3鏟斗應(yīng)力與變形
在連續(xù)挖掘軌跡中,鏟斗應(yīng)力、變形較大的位置相同。如圖6所示:鏟斗應(yīng)力較大部位為背板、耳板與斗后壁板的焊接處,挖掘點(diǎn)鏟斗的最大應(yīng)力為302.283 MPa;鏟斗變形較大的位置出現(xiàn)在切削刃板中間位置,軌跡中鏟斗的最大變形為6.531 mm。
鏟斗整體結(jié)構(gòu)優(yōu)化是三維層次的優(yōu)化,涉及到了具體的挖掘工況,鏟斗最大應(yīng)力是否小于材料屈服強(qiáng)度對挖掘機(jī)工作效率有很大的影響。因此,將鏟斗最大應(yīng)力作為優(yōu)化目標(biāo)1。當(dāng)挖掘機(jī)發(fā)揮的挖掘力不變、切削同樣體積的物料時,鏟斗與物料的總質(zhì)量越小,越能節(jié)約生產(chǎn)成本,又由于鏟斗所有材料都設(shè)為Q345,密度一致,所以將質(zhì)量作為優(yōu)化目標(biāo)2。從而得到鏟斗結(jié)構(gòu)的多目標(biāo)優(yōu)化函數(shù):
min()=+
(1)
其中,+=1,且、為正實(shí)數(shù)。在此,直接令==0.5。
選取鏟斗的切削角、斗底弧線半徑、斗后角、切削半徑等結(jié)構(gòu)參數(shù)作為設(shè)計(jì)變量。即:
=[,,,]=[,,,]
(2)
3.3.1 基礎(chǔ)約束
選取原鏟斗中切削角、切削半徑、斗后角、斗底弧線半徑數(shù)值加減10%作為優(yōu)化區(qū)間,如表2所示。
表2 鏟斗參數(shù)取值范圍
3.3.2 性能約束1
將鏟斗質(zhì)量的變化量作為性能約束代入結(jié)構(gòu)優(yōu)化中,在優(yōu)化后,鏟斗質(zhì)量的變化量應(yīng)大于5%,約束表達(dá)如下式:
(3)
3.3.3 性能約束2
將鏟斗最大應(yīng)力作為性能約束2代入結(jié)構(gòu)優(yōu)化中,優(yōu)化后的最大應(yīng)力應(yīng)小于優(yōu)化前,約束表達(dá)如下式:
()=<[]=302.283 MPa
(4)
綜上,鏟斗整體的多目標(biāo)結(jié)構(gòu)優(yōu)化模型如下:
(5)
此次優(yōu)化使用的方法為遺傳算法,鏟斗結(jié)構(gòu)優(yōu)化具體內(nèi)容為:(1)編寫鏟斗質(zhì)量計(jì)算公式,并輸入MATLAB遺傳算法工具箱;(2)設(shè)置參數(shù)取值范圍;(3)編寫約束程序;(4)求解符合質(zhì)量約束的結(jié)果;(5)調(diào)用APDL程序,對比此結(jié)果是否滿足應(yīng)力約束條件;(6)若滿足,則優(yōu)化完成;不滿足,繼續(xù)使用遺傳算法求解,直至得到理想結(jié)果。優(yōu)化后,鏟斗結(jié)構(gòu)參數(shù)、優(yōu)化評價指標(biāo)、最大應(yīng)力的對比結(jié)果分別如表3、表4和圖7所示。
圖7 優(yōu)化后鏟斗應(yīng)力
表3 優(yōu)化后鏟斗參數(shù)對比
表4 優(yōu)化后鏟斗評價指標(biāo)對比
由表3可知:4個設(shè)計(jì)變量中切削角降低了85,斗后角增長了365,斗底弧線半徑增長了8.33%,切削半徑降低了4.35%。由表4可知:最大應(yīng)力降低了6.23%,質(zhì)量降低了5.27%,優(yōu)化目標(biāo)降低了6.25%。
由圖7可知:優(yōu)化前后鏟斗應(yīng)力集中區(qū)域的位置并未發(fā)生改變,最大應(yīng)力由優(yōu)化前的302.283 MPa降低為283.45 MPa,減少了6.23%。此次優(yōu)化結(jié)果符合預(yù)期要求。
基于連續(xù)軌跡理論選擇了一條由4段分軌跡組成的連續(xù)挖掘軌跡,計(jì)算并分析了該軌跡上鏟斗、斗桿液壓缸極限挖掘力的數(shù)值變化規(guī)律,當(dāng)斗齒尖處于挖掘點(diǎn)時,鏟斗液壓缸的極限挖掘力最大。
使用APDL語言建立了鏟斗參數(shù)化模型,以極限挖掘力為外載荷對鏟斗結(jié)構(gòu)強(qiáng)度進(jìn)行了計(jì)算,對比分析了鏟斗應(yīng)力、變形規(guī)律和分布情況,挖掘點(diǎn)的鏟斗應(yīng)力、變形最大,因此,在此工況下對鏟斗進(jìn)行優(yōu)化。
以降低鏟斗質(zhì)量和最大應(yīng)力為優(yōu)化目標(biāo),選取多個鏟斗結(jié)構(gòu)參數(shù)作為設(shè)計(jì)變量,建立了鏟斗輕量化優(yōu)化模型,使用遺傳算法進(jìn)行優(yōu)化,優(yōu)化后鏟斗質(zhì)量和最大應(yīng)力明顯減小,驗(yàn)證了優(yōu)化方法的可行性。