摘要:" Bt毒素是蘇云金芽孢桿菌產生的一類生物大分子蛋白質,對多種常見的農林害蟲甚至衛(wèi)生媒介蚊蟲都有特異性毒殺活性,是具備重大經(jīng)濟價值和生態(tài)環(huán)境效益的綠色抗蟲材料。然而,隨著Bt毒素制劑和轉基因抗蟲作物長期應用,致使靶標害蟲抗藥性進化加快,并對非靶標生物的交互毒性等潛在風險加大,因此對其殘留監(jiān)測成了農業(yè)食品和環(huán)境安全風險評估的重要內容。本研究梳理了Bt毒素傳統(tǒng)的依托微生物表達體系的制劑和植物表達體系的轉基因抗蟲作物應用及其對靶標害蟲抗藥性和非靶標生物交互毒性潛在風險的研究現(xiàn)狀,概述了針對Bt毒素殘留分析的免疫檢測研究進展;并結合本研究團隊近年來依托熱門的噬菌體展示抗體庫技術,在Bt毒素特異性基因工程抗體創(chuàng)制以及Bt毒素抗蟲模擬物靶向設計等方面的最新研究成果,探討了基于Bt毒素的新型安全殺蟲蛋白質創(chuàng)新研發(fā)與應用策略及其毒素蛋白質殘留檢測技術創(chuàng)新等未來潛在發(fā)展動向和可行捷徑,為進一步圍繞Bt毒素的相關研究提供有價值的文獻資料和新的思路。
關鍵詞:" Bt毒素;殺蟲蛋白質;蛋白質表達;轉基因作物;農藥殘留;免疫檢測
中圖分類號:" S481""" 文獻標識碼:" A""" 文章編號:" 1000-4440(2024)12-2387-14
收稿日期:2024-03-13
基金項目:江蘇省自然科學基金面上項目(BK20231384);國家自然科學基金重點項目(31630061);國家重點研發(fā)計劃政府間國際合作重點專項(2023YFE0109400);江蘇省農業(yè)自主創(chuàng)新基金項目
作者簡介:徐重新(1987-),男,湖南新田人,博士,副研究員,主要從事農業(yè)食品安全危害物防控研究。(E-mail)hhxyxcx@163.com
徐重新,沈建興,金嘉鳳,等. Bt毒素表達應用及其殘留風險與免疫檢測研究進展[J]. 江蘇農業(yè)學報,2024,40(12):2387-2400.
doi:10.3969/j.issn.1000-4440.2024.12.022
Research progress on the expression and application of Bt toxin and its residue risk and immunoassay
XU Chongxin1,2," SHEN Jianxing1,2," JIN Jiafeng1,2," CHEN Wei2," ZHANG Xiao2," LIU Yuan2," LIU Xianjin2
(1.School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;2.Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences/State Key Laboratory Cultivation Base, Ministry of Science and Technology——Jiangsu Key Laboratory for Food Quality and Safety, Nanjing 210014, China)
Abstract:" Bt toxin is a kind of biological macromolecular protein produced by Bacillus thuringiensis, which has specific toxic activity for many common agricultural and forestry pests and even health mosquito vectors, and is a green insect-resistant material with great economic value and ecological and environmental benefits. However, with the long-term use of Bt toxin preparations and Bt-transgenic crops, the potential risks of their exposure, such as driving the evolution of resistance to target pests and cross-toxicity to non-target organisms, have attracted much attention. Therefore, monitoring their residues has become an important part of agriculture, food and environmental safety risk assessment. This paper reviewed the current status of research on the application of Bt toxin traditional preparations based on microbial expression system and transgenic insect-resistant crops based on plant expression system, as well as the potential risk of resistance to target pests and cross-toxicity of non-target organisms, and summarized the research progress of immunoassay for Bt toxin residues monitoring. Combined with the latest research results of our research team in the creation of Bt toxin-specific genetic engineering antibodies and the targeted design of Bt toxin anti-insect mimics based on the popular phage display antibody library technology in recent years, the innovative research and development and application strategies of new safe insecticidal proteins based on Bt toxins and the future potential development trends and feasible shortcuts of technological innovation in the detection of toxin protein residues were discussed. This paper can provide valuable literature and new ideas for further research on Bt toxin.
Key words:" Bt toxin;insecticidal protein;protein expression;genetically modified crops;pesticide residue;immunoassay
Bt毒素是蘇云金芽孢桿菌(Bacillus thuringiensis)代謝產生的具有高特異性靶向抗蟲功能的生物大分子蛋白質,現(xiàn)已認定命名的Bt毒素包括Cry、Cyt、Vip和Sip等4大類型總計超過1 000余種亞型,它們的相對分子量大多介于25 000~135 000 Da,殺蟲譜涵蓋鱗翅目、鞘翅目、雙翅目、半翅目、膜翅目以及線蟲和蝸牛等多種常見農林害蟲和衛(wèi)生媒介蚊蟲。盡管Bt毒素種類多、殺蟲譜廣,但它們中絕大多數(shù)亞型對靶標害蟲的作用機制基本被鎖定為與相應蟲體中腸壁細胞膜上特異性膜蛋白受體的系列級聯(lián)互作,從而導致蟲體腸道功能消化吸收紊亂,最終引起蟲體生長發(fā)育受阻直至死亡。目前,Bt毒素以微生物表達制劑和轉基因抗蟲作物形式被廣泛用于害蟲綠色防治,單是在中國登記的現(xiàn)行的有效成分中含Bt毒素的微生物農藥就有240余種,而其商品化的轉基因作物涉及水稻、玉米、大豆、馬鈴薯、棉花、煙草等重要作物類型,每年在全球的種植面積接近2×108 hm2,帶動產生了巨大的經(jīng)濟價值和社會生態(tài)效益。不過,自20世紀30年代和90年代商品化的Bt毒素制劑和轉基因抗蟲作物先后面世以來,Bt毒素產品在全世界連續(xù)推廣應用已近百年,由其長期疊加蓄積誘發(fā)的靶標害蟲抗藥性以及對非靶標生物的交互毒性等潛在風險問題日益凸顯,尤其是近年來,有關其轉基因作物食品的安全性備受輿論關注,爭議不絕于耳。中國早在2001年就由國務院頒布了《農業(yè)轉基因生物安全管理條例》,2023年農業(yè)農村部頒布最新修訂的《轉基因植物安全評價指南》,國家層面上一直高度重視轉基因及其產品研發(fā)應用,同時也不斷明確要求加大轉基因及其產品的監(jiān)督檢查與安全評價力度。基于抗體-抗原特異性識別原理的免疫檢測是在蛋白質層面上追蹤和篩查Bt毒素的最常用方法,特別是酶聯(lián)免疫分析法(Enzyme-linked immunosorbent assay,ELISA)和金標側流免疫層析法(Lateral flow immunoassay, LFIA)已被納入國家標準《轉基因產品檢測 蛋白質檢測方法》(GB/T 19495.8-2004)用于Bt毒素檢測。當前抗體已從傳統(tǒng)多克隆抗體(Polyclonal antibodies,pAbs)和單克隆抗體(Monoclonal antibody, mAb)發(fā)展到了形式更為多樣的人工基因工程抗體(Genetically engineered antibody, GEAb)階段,依托這些抗體材料衍生出了借助比色(Colorimetric)、熒光(Fluorescence)、化學發(fā)光(Chemiluminescence)、電化學(Electrochemical)、光電化學發(fā)光(Photoelectrochemical)、表面等離子共振(Surface plasmon resonance)以及肉眼可視化試紙(特指LFIA)等技術手段的可用于Bt毒素快速追蹤篩查的免疫分析方法?;诖耍谙到y(tǒng)梳理Bt毒素表達應用及其殘留風險研究現(xiàn)狀的基礎上,重點概述了有關免疫檢測方法在Bt毒素追蹤篩查上的研究進展,并結合本研究團隊近年來在基因工程抗體靶向設計與應用上的最新研究成果和相應研究經(jīng)驗,對圍繞Bt毒素的殺蟲蛋白質創(chuàng)新研發(fā)與應用策略以及相應毒素蛋白質追蹤篩查技術的未來發(fā)展動向進行探討,以期為開展相關研究提供新的、有價值的文獻資料,同時為相關研究開拓新思路。
1" Bt毒素表達應用研究現(xiàn)狀
Bt毒素在靶標害蟲防治應用上主要依托基于微生物表達體系的制劑和基于植物表達體系的轉基因抗蟲作物兩種形式。就微生物表達體系的制劑而言,商品化的Bt毒素制劑產品幾乎都是依托蘇云金芽孢桿菌無晶體突變株進行表達,相應配套的表達質粒載體較為成熟,毒素產物結構較為完整、構象相對穩(wěn)定,蛋白質表達量及其活性受到sigma 70家族(Sig A/E/K/H)轉錄起始因子、Spo0A~P孢子形成調控因子、sigma 54家族(Sig L)和多聚磷酸鹽激酶(PPK)代謝調控因子以及輔助蛋白質P20等多重因素的復雜協(xié)同調控。而在實驗室研究階段,大腸桿菌(Escherichia coli)憑借其較為清晰的遺傳背景和成熟的配套質粒載體,幾乎成為了包括Bt毒素在內的外源蛋白質室內小劑量表達分析和初步應用的首選菌株。此外畢赤酵母(Pichia pastoris)、球孢白僵菌(Beauveria bassiana)、發(fā)光桿菌(Photorhabdus temperata)、熒光假單胞菌(Pseudomonas fluorescens)、乳酸鏈球菌(Lactococcus lactis),甚至桿狀病毒baculovirus-sf 9細胞表達體系和噬菌體phage-大腸桿菌表達體系都有用于表達Bt毒素的研究報道,文獻可查的涉及Bt毒素表達的微生物菌株及相應配套的質粒載體見表1所示。就植物表達體系的Bt毒素轉基因抗蟲作物而言,目前僅有Cry1Ab、Cry1Ac、Cry1Fa2、Cry2Ab2、Cry2Ae、Cry3Bb1、Cry9C、Cry34Ab1、Cry35Ab1和Vip3Aa19、Vip3Aa20,以及人工改造的Cry1A.105、mCry3A和eCry3.1Ab等為數(shù)不多的亞型轉基因抗蟲作物實現(xiàn)了商品化推廣應用。不過涉及Bt毒素的轉基因作物研發(fā)一直是業(yè)界持續(xù)關注的熱點,供試的Bt毒素種類眾多,相關作物現(xiàn)已涵蓋水稻、玉米、小麥、大豆、花生、鷹嘴豆、豇豆、卷心菜、油菜、煙草、棉花等主要糧食作物和經(jīng)濟作物。涉及的Bt毒素蛋白質在相應轉基因作物植株根、莖、葉以及花粉、果實等不同部位中的表達量差異較大,總體來說在葉片中的毒素蛋白質表達量相對較高,大多能達到μg/g級別,在花粉、果實中表達量普遍較低,一般都處于或低于ng/g級別。文獻至文獻中報道的Bt毒素在鮮葉中的蛋白質表達量在μg/g級別(表2)。這是因為在構建轉基因抗蟲作物品系過程中,往往會以靶標害蟲對作物植株取食部位的偏好性(多數(shù)為葉莖)為導向,從而設計組織特異性驅動的啟動子,如用于轉基因水稻的pGreen啟動子、用于轉基因玉米的ubi啟動子和用于轉基因土豆的Lhca3啟動子等都是靶向定位在相應轉基因作物植株葉片的特異性高效表達啟動子,這種設計策略在有效防治害蟲的同時,也能最大限度減少毒素蛋白質在這些農作物的食用組織部位的殘留蓄積。
2" Bt毒素殘留風險研究現(xiàn)狀
自Bt毒素制劑及其轉基因抗蟲作物推廣應用以來,對其殘留及暴露風險不間斷持續(xù)性監(jiān)測與評估是相關農業(yè)食品和生態(tài)環(huán)境安全研究的重要內容。長期跟蹤研究結果表明,采用常規(guī)制劑噴灑和轉基因作物表達應用方式,在自然條件下,Bt毒素蛋白質在土壤和轉基因作物組織中的殘留量半降解期普遍在20~35 d,且1年內降解量均可達到85%以上,完全降解則需要3~4年甚至更長時間。不過隨著Bt毒素制劑和轉基因抗蟲作物長期廣泛應用,其殘留或疊加累積殘留風險越發(fā)突出,其中驅動靶標害蟲抗藥性進化風險是包括Bt毒素在內的幾乎所有農藥在長期廣泛使用后都會出現(xiàn)的問題。自20世紀90年代在田間自然環(huán)境中首次發(fā)現(xiàn)小菜蛾(Plutella xylostella)對Bt毒素產生抗藥性以來,目前至少包括小菜蛾、草地貪夜蛾(Spodoptera frugiperda)、棉鈴蟲(Helicoverpa armigera)在內的13種常見鱗翅目害蟲以及包括美洲玉米根螢葉甲(Diabrotica virgifera virgifera)和山楊葉甲(Chrysomela tremulae)在內的2種鞘翅目害蟲在野外已經(jīng)被監(jiān)測到對一種或多種Bt毒素產生了抗藥性(表3)。此外,遍布世界的相關研究機構在實驗室條件下特異性篩選的各種靶標害蟲抗性品系更是不勝枚舉,這些品系的潛在逃逸風險極大地增加了野外環(huán)境中靶標害蟲對Bt毒素抗性進化的不確定性。
非靶標生物的交互毒性也是Bt毒素在推廣應用過程中關注的重點。大量研究結果表明,在科學理性劑量條件下的毒理試驗中,Bt毒素對包括人類、小鼠、兔子、羊在內的哺乳動物以及鵪鶉、斑馬魚、蜜蜂、蚯蚓、捕食性天敵草蛉等典型代表性實驗生物均未觀測到明顯異常的毒副作用表征,但也無法完全排除其可能存在的潛在風險。有跡象表明,Bt毒素殘留可能會導致某些環(huán)境微生物多樣性結構亞失衡,只是相關研究結果尚存爭議。目前,有確切證據(jù)表明,部分Bt毒素對非靶標生物家蠶(Bombyx mori)、二星瓢蟲(Adalia bipunctata)和秀麗隱桿線蟲(Caenorhabditis elegans)具有較強的特異性交互毒副作用(表3),部分Bt毒素還對個別寄生蜂種類如中紅側溝繭蜂(Microplitis mediator)、內寄生小黃蜂(Palmistichus elaeisis)、赤眼蜂(Trichogramma chilonis)的卵孵化和幼蟲發(fā)育存在一定毒副作用??偟膩碚f,相較于化學農藥,除了同樣存在不可規(guī)避的驅動靶標害蟲抗藥性風險之外,Bt毒素對非靶標生物的交互毒性風險仍然是現(xiàn)有可用的所有同等藥效農藥類型中相對最低的。Bt毒素制劑及其轉基因抗蟲作物所帶動產生的巨大經(jīng)濟價值和生態(tài)環(huán)境效益奠定了其在害蟲綠色防控上的引領地位,并在可預知的未來相當時期內幾乎不可替代。
3" Bt毒素殘留免疫檢測研究現(xiàn)狀
免疫檢測是基于抗體-抗原特異性結合互作識別的分析方法,具有操作簡便、反應快速、特異性強、靈敏度高等特點,現(xiàn)已廣泛應用于包括Bt毒素在內的靶標抗原快速篩查監(jiān)測中。免疫檢測法的核心基礎材料是抗體,而當前抗體形式已經(jīng)從傳統(tǒng)天然pAbs和mAb發(fā)展到了人工修飾的GEAb階段。天然抗體中,除羊駝和鯊魚等極少數(shù)為先天缺失輕鏈結構的特殊抗體外,其他高等級動物均為包含了典型雙重-輕鏈結構的“Y”型抗體,而GEAb則為人工修飾而成的天然抗體的完整抗原結合片段,較為常見的如天然“Y”型抗體的單重-輕鏈由柔性短肽拼接而形成的單鏈抗體(scFv)及其單個重鏈或單個輕鏈的單域抗體(sDAb)和源于羊駝或鯊魚的單重鏈納米抗體(Nbs)。目前,基于這些抗體形式,采用單抗體或雙抗體組合等策略,結合特異性標記物及相應探測手段,衍生出了包括比色的酶聯(lián)免疫分析(ELISA),肉眼可視化試紙LFIA以及熒光、化學發(fā)光、電化學發(fā)光、光電化學發(fā)光、表面等離子共振等特征性發(fā)光探測乃至免疫PCR等形式多樣的免疫檢測方法,均可用于Bt毒素殘留的追蹤篩查,相關代表性研究實例見表4。
ELISA是基于酶標記(如辣根過氧化物酶HRP)的特異性顯色比色法,其中依托雙抗體-抗原互作的夾心ELISA(DAS-ELISA)和單抗體-抗原互作的競爭ELISA(IC-ELISA)是Bt毒素最為經(jīng)典的免疫檢測方法,其檢測靈敏度主要由抗體-抗原互作的親和力決定,一般而言基于優(yōu)質的抗體所建立的ELISA對Bt毒素檢測的靈敏度能達到甚至略低于ng/mL級或ng/mg級;如果進一步優(yōu)化標記物,如將HRP與鏈霉親和素(SA)及沸石咪唑鹽骨架(ZIF-8)耦合形成HRPamp;SA/ZIF-8復合物標記抗體建立DAS-ELISA,對Cry1Ab毒素檢測的靈敏度就可達pg/mL級或pg/mg級。LFIA也是Bt毒素最為常見的免疫檢測方法之一,其中膠體金標記抗體的肉眼可視化試紙LFIA最具代表性,商品化產品也最為成熟,只是該方法靈敏度相對較低,一般在100 ng/mL級或100 ng/mg級;不過隨著量子點(QDs)、多重熒光-生物素耦合放大效應物(如FLPL-BSAS)等熒光性標記物應用到LFIA上,借助熒光激發(fā)顯色儀,可實現(xiàn)對Bt毒素檢測的肉眼可視,檢測靈敏度達到ng/mL級或ng/mg級甚至pg/mL級或pg/mg級。ELISA和LFIA作為Bt毒素最基礎也是最具代表性的兩種免疫檢測方法,相關研究較多,產品化開發(fā)也較為成熟,單是美國EnviroLogix Inc公司推出的Bt-ELISA試劑盒就涵蓋了Cry1Ab、Cry1Ac、Cry1C、Cry1F、Cry2Aa、Cry2Ab、Cry3Bb1、Cry9C、Cry34Ab1、mCry3A等亞型,檢測限均低于1 ng/mL或1 ng/mg,同時其推出的Bt-LFIA試紙條也涵蓋了Cry1Ab、Cry1Ac、Cry1F、Cry2Ac、Cry2Ae、Cry3Bb、Cry9C、Cry34Ab1、Vip3A、CryBt11、mCry3A等亞型,檢測限均低于0.1 μg/mL或0.1 μg/mg(http://www.envirotest-china.com/chan-pin-fen-lei/zhuan-ji-yin/)。
基于熒光、化學發(fā)光、電化學發(fā)光、光電化學發(fā)光、表面等離子共振等特征性發(fā)光信號探測的免疫分析法又被統(tǒng)稱為免疫傳感器(表4),目前在Bt毒素檢測上的創(chuàng)新研究較為熱門。這些檢測方法既有偏向的特征性,在標記物耦合材料、信號激發(fā)或信號探測上又有一些重疊,它們的共同特點是依托抗體-抗體互作的親和力,進一步借助特殊發(fā)光標記物標記抗體,與Bt毒素特異性結合的同時,通過信號激發(fā)起到信號放大的作用,從而極大提高對Bt毒素檢測的靈敏度。不過這些方法大多數(shù)處于實驗室探索研究的初級階段,目前還未出現(xiàn)相關成熟的商品化應用產品。其中,熒光免疫分析(FLISA)主要是借助熒光納米材料標記到抗體上,在特異性結合Bt毒素后,通過熒光顯色就能探測到Bt毒素,代表性的熒光標記物有稀土元素,如量子點、熒光聚合物點(PDs)、熒光素酯(FDA)、磁性納米顆粒(MNps)熒光微球以及異硫氰酸熒光素(FITC)等,相關FLISA對Bt毒素的檢測靈敏度可以達到ng/mL級或ng/mg級甚至個別可以突破pg/mL級或pg/mg級。而化學發(fā)光免疫分析(CLIA)、電化學發(fā)光免疫分析(CLIA)、光電化學發(fā)光免疫分析(PECLIA)以及表面等離子共振免疫分析(SPRIA)則都是依托光、電或光電級聯(lián)的以特征性發(fā)光納米材料標記抗體為基礎的,集材料標記、信號激發(fā)以及信號探測于一體的檢測分析系統(tǒng),其中金納米顆粒(AuNPs)、鐵離子磁性納米顆粒(如Fe3O4)和量子點納米顆粒是較為常見的基礎性耦合材料,而相應復合材料信號激發(fā)和信號探測方式較為多樣,對Bt毒素的檢測靈敏度也相對較高,一般在pg/mL級或pg/mg級甚至更低(表4)。這類檢測方法在信號材料耦合上較為復雜,對儀器要求較高,依賴性較強,在市場化推廣應用上仍然任重道遠。此外,基于抗體與特異性核苷酸耦合的免疫-PCR也有零星涉及Bt毒素檢測應用研究的報道,不過靈敏度差異較大,相關技術可能還不夠穩(wěn)定。
4" 展望
得益于Bt毒素對靶標害蟲的高效廣譜殺蟲活性和對人類及生態(tài)環(huán)境的高安全性優(yōu)勢,其成熟的和在研的制劑產品及轉基因抗蟲作物品系幾乎遍布全球,引發(fā)了害蟲防控的綠色革命,也帶動產生了前所未有的經(jīng)濟價值和生態(tài)環(huán)境效益。隨著世界范圍內害蟲綠色防控理念深入人心,農藥投入品從高危高毒高殘留的化學農藥向高效低毒低殘留乃至高效無毒無殘留的生物農藥發(fā)展的趨勢已成為必然。Bt毒素作為當前最具代表性的蛋白質類生物材料,其表達應用策略不斷創(chuàng)新的同時,對其殘留的風險評估和追蹤篩查也必將是農業(yè)食品和生態(tài)環(huán)境安全領域持續(xù)關注的重點。
圍繞Bt毒素表達應用,目前盡管采用傳統(tǒng)微生物制劑或轉基因抗蟲作物方式均能實現(xiàn)對相應靶標害蟲的綠色防控,但隨著靶標害蟲抗藥性進化,特別是一些單劑型Bt毒素產品已經(jīng)無法滿足生產上對害蟲防治的需求。近年來,借鑒成熟的化學農藥復配經(jīng)驗模式,針對不同農藥對相同靶標害蟲的不同作用模式特征,特別是設計Bt毒素與其他蛋白質類生物農藥(如具抗蟲功能的凝集素、蛋白酶抑制劑、動物毒素、植物防御素等)甚至其他亞型的Bt毒素進行復配的創(chuàng)新應用策略,有望提高對靶標害蟲及其抗藥性靶標害蟲的治理能力,相關復配的制劑或基因融合表達的轉基因抗蟲作物品系已有部分研究成功的報道,但成熟的產品較少,相關研究值得繼續(xù)推進。此外,近年來以植物內生菌為生防載體搭載外源抗病、抗蟲蛋白質基因定殖于宿主作物協(xié)同防治靶標病蟲害的策略也逐漸受到關注,如Downing等以植物內生細菌Pseudomonas fluorescens搭載幾丁質酶基因定殖于大豆防治立枯絲核菌引起的病害,Qi等以植物內生真菌Chaetomium globosum搭載半夏凝集素基因定殖于油菜防治蚜蟲,均達到了預期效果。目前這種不同于傳統(tǒng)微生物制劑和轉基因抗蟲作物模式的創(chuàng)新應用策略尚未涉及Bt毒素的相關研究,值得探索開發(fā)。
雖然Bt毒素也有殘留風險,但是從目前已知可選的農藥類型分析,綜合靶標害蟲抗蟲活性、非靶標生物交互毒性以及生態(tài)環(huán)境危害性等因素考慮,Bt毒素仍是當前安全系數(shù)最高的綠色生物抗蟲材料,這基本上已經(jīng)成為業(yè)界共識。但不容忽視的是,在Bt毒素制劑產品及其轉基因抗蟲作物的驅動下,近年來靶標害蟲抗藥性進化趨勢正在加劇,同時存在交互毒性的非靶標生物,特別是經(jīng)濟物種家蠶的生境面臨前所未有的脅迫壓力。此外轉基因跨物種基因漂移和轉基因食品潛在安全風險等問題,在有限的時間內既無法肯定也不能完全排除,仍然需要長期跟蹤調查和大數(shù)據(jù)綜合評估。目前,除了借鑒化學農藥采用交替或復配用藥策略外,尚未發(fā)現(xiàn)更好的方式來有效緩解靶標害蟲對Bt毒素的抗藥性壓力,不過針對非靶標生物的交互毒性,目前在室內條件下是可以通過人工定向突變受體基因(如家蠶中腸受體ABC轉運蛋白)的方式來緩解甚至是抵御Bt毒素對其造成的交互毒性。本研究團隊近年來借鑒抗體免疫網(wǎng)絡理論中Ab2β類型抗獨特型抗體具有模擬抗原結構乃至生物功能的特性(圖1a),設計以Bt毒素抗體為固相包被靶點,并結合相應靶標害蟲中腸受體如鈣黏蛋白質、堿性磷酸酶等蛋白質的關鍵功能片段互作信息,從人源化的噬菌體展示抗體庫中靶向篩選獲得一系列具備初步模擬相應Bt毒素部分關鍵結構和殺蟲功能(圖1b)的人源抗蟲抗體材料,Bt毒素及其抗蟲模擬物對靶標害蟲幼蟲飼喂72 h的校正死亡率如表5所示。這類全新的具備模擬Bt毒素殺蟲功能的抗蟲抗體材料,不僅有望緩解靶標害蟲對Bt毒素的抗藥性壓力,同時由于其人源屬性,理論上對人類免疫系統(tǒng)不會造成明顯的異源排斥反應風險,因此與Bt 毒素相比更具安全性,相關研究結果極具借鑒意義和探索價值。
圍繞Bt毒素免疫檢測方面,抗體制備及信號物標記、探測分析是開展相關檢測研究的重點,其中抗體是最為核心的基礎性材料。目前Bt毒素免疫檢測無論是產品研發(fā)還是技術創(chuàng)新設計,仍然以傳統(tǒng)成熟的pAbs和mAb為主,而GEAb盡管受到熱捧,但在抗原結合活性和功能穩(wěn)定性方面普遍不盡如人意,還難以推進應用。值得注意的是,近年來一些新型“擬抗體”功能的生物材料有替代抗體與抗原特異性識別結合并用于Bt毒素免疫檢測的發(fā)展趨勢。如靶標害蟲中腸受體鈣黏蛋白質與部分Bt毒素的親和力可達1 nmol/L,由此Shen等以鈣黏蛋白質片段與pAbs組合建立DAS-ELISA對Cry1Ab、Cry1Ac、Cry2Aa、Cry2Ab毒素的廣譜檢測靈敏度達到5.03~30.83 ng/mL,Wan等以鈣黏蛋白質表位短肽聚合物偶聯(lián)生物素建立ELISA對Cry1Ab、Cry1Ac、Cry1C、Cry1F、Cry2Aa毒素廣譜識別能力的線性檢測范圍為0~50 ng/mL,Wang等以小菜蛾BBMV與噬菌體展示短肽組合建立DAS-ELISA對Bt Cry2Ad毒素的檢測靈敏度達到8 ng/mL,Lu等則以噬菌體展示短肽與mAb組合建立HRP/AuNPs標記的ECLIA對Cry1Ab毒素的檢測靈敏度高達7 pg/mL,Jin等依托核酸適配體(Aptamer)建立的類ECLIA對Cry1Ab毒素的檢測靈敏度達到0.96 ng/mL,Chen等依托DNA探針建立的表面增強拉曼分析法對Cry1Ab、Cry1Ac的檢測靈敏度高達0.1 pg/mL。這些新型類抗體功能的生物材料為Bt毒素免疫檢測創(chuàng)新研發(fā)提供了潛在的豐富的可組合甚至是可替代的基礎性材料,值得進一步挖掘應用。
參考文獻:
PALMA L, MUOZ D, BERRY C, et al. Bacillus thuringiensis toxins:an overview of their biocidal activity. Toxins,2014,6(12):3296-3325.
徐重新,金嘉鳳,孫曉明,等. 基于Bt毒素的殺蟲蛋白理性設計與創(chuàng)新應用策略. 中國農業(yè)科學,2024,57 (1):96-125.
耿麗麗,陶嶺梅,張宏軍,等. 蘇云金芽孢桿菌安全性的研究進展. 中國生物防治學報,2021,37(1):2-10.
ISAAA. Global status of commercialized biotech/GM crops in 2019:biotech crops drive socio-economic development and sustainable environment in the new frontier. Ithaca:ISAAA,2020. https://www.isaaa.org/resources/publications/briefs/55/default.asp.
JURAT-FUENTES J L, HECKEL D G, FERR J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annual Review of Entomology,2021,66:121-140.
JIAO Y, YANG Y, MEISSLE M, et al. Comparison of susceptibility of Chilo suppressalis and Bombyx mori to five Bacillus thuringiensis proteins. Journal of Invertebrate Pathology,2016,136:95-99.
KOCH M S, WARD J M, LEVINE S L, et al. The food and environmental safety of Bt crops. Frontiers in Plant Science,2015,6:283.
FAHEEM A, QIN Y, NAN W, et al. Advances in the immunoassays for detection of Bacillus thuringiensis crystalline toxins. Journal of Agricultural and Food Chemistry, 2021,69:10407-10418.
PENG Q, YU Q, SONG F. Expression of cry genes in Bacillus thuringiensis biotechnology. Applied Microbiology and Biotechnology,2019,103:1617-1626.
DENG C, PENG Q, SONG F, et al. Regulation of cry gene expression in Bacillus thuringiensis. Toxins,2014,6:2194-2209.
ROSANO G L, CECCARELLI E A. Recombinant protein expression in Escherichia coli:advances and challenges. Frontiers in Microbiology,2014,5:172.
BUKHARI D A, SHAKOORI A R. Cloning and expression of Bacillus thuringiensis cry11 crystal protein gene in Escherichia coli. Molecular Biology Reports,2009,36:1661-1670.
GURKAN C, ELLAR D. Expression of the Bacillus thuringiensis Cyt2Aa I toxin in Pichia pastoris using a synthetic gene construct. Biotechnology and Applied Biochemistry,2003,38:25-33.
DENG S Q, ZOU W H, LI D L, et al. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. PLoS Neglected Tropical Diseases,2019,13:e0007590.
TOUNSI S, AOUN A E, BLIGHT M, et al. Evidence of oral toxicity of Photorhabdus temperata strain K122 against Prays oleae and its improvement by heterologous expression of Bacillus thuringiensis cry1Aa and cry1Ia genes. Journal of Invertebrate Pathology,2006,91:131-135.
HERNNDEZ-RODRGUEZ C S, RUIZ DE ESCUDERO I, ASENSIO A, et al. Encapsulation of the Bacillus thuringiensis secretable toxins Vip3Aa and Cry1Ia in Pseudomonas fluorescens. Biological Control, 2013,66:159-165.
DURMAZ E, HU Y, AROIAN R V, et al. Intracellular and extracellular expression of Bacillus thuringiensis crystal protein Cry5B in Lactococcus lactis for use as an anthelminthic. Applied and Environmental Microbiology, 2016, 82:1286-1294.
QIN Y, YING S H, CHEN Y, et al. Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per Os infection. Applied and Environmental Microbiology,2010,76:4611-4618.
PACHECO S, CANTON E, ZUNIGA-NAVARRETE F, et al. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes. AMB Express,2015,5:73.
RUBIO-INFANTE N, MORENO-FIERROS L. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. Journal of Applied Toxicology,2016,36:630-648.
YANG Y Y, MEI F, ZHANG W, et al. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter. Journal of Economic Entomology,2014,107:1674-1679.
DU D, GENG C, ZHANG X, et al. Transgenic maize lines expressing a cry1C* gene are resistant to insect pests. Plant Molecular Biology Reporter,2014,32:549-557.
CHAKRABARTI S K, LUTZ K A, LERTWIRIYAWONG B, et al. Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Research,2006,15:481-488.
WANG Y, ZHANG L, LI Y, et al. Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera:Crambidae). Environmental Entomology,2014,43:528-536.
CHEN H, HUANG Y, YE M, et al. Achieving high expression of cry in green tissues and negligible expression in endosperm simultaneously via rbcS gene fusion strategy in rice. International Journal of Molecular Sciences,2023,24(10):9045.
XU C, CHENG J, LIN H, et al. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance. Scientific Reports,2018,8:15788.
YE R, HUANG H, YANG Z, et al. Development of insect-resistant transgenic rice with Cry1C* free endosperm. Pest Management Science,2009,65:1015-1020.
CHEN H, TANG W, XU C G, et al. Genetics, transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theoretical and Applied Genetics,2005,111:1330-1337.
CHAKRABORTY M, REDDY P S, MUSTAFA G, et al. Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests. Transgenic Research,2016,25:665-678.
LIANG J G, ZHANG D D, LI D Y, et al. Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936. Journal of Integrative Agriculture,2021,20:792-803.
CHEN H X, YANG R, YANG W, et al. Efficacy of Bt maize producing the Cry1Ac protein against two important pests of corn in China. Environmental Science and Pollution Research,2016,23:21511-21516.
LI X Y, LANG Z H, ZHANG J, et al. Acquisition of insect-resistant transgenic maize harboring a truncated cry1Ah gene via agrobacterium-mediated transformation. Journal of Integrative Agriculture,2014,13:937-944.
CHEN S, WANG W, KANG G, et al. Toxic effects of Bt-(Cry1Ab+Vip3Aa) maize on storage pest Paralipsa gularis (Zeller). Toxins,2024,16(2):92.
NGUYEN H T, JEHLE J A. Expression of Cry3Bb1 in transgenic corn MON88017. Journal of Agricultural and Food Chemistry,2009,57:9990-9996.
MEIYALAGHAN S, JACOBS J M E, BUTLER R C, et al. Transgenic potato lines expressing cry1Ba1 or cry1Ca5 genes are resistant to potato tuber moth. Potato Research,2006,49:203-216.
YU H, LI Y, LI X, et al. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests. Pest Management Science,2013,69:1326-1333.
QIN D, LIU X Y, MICELI C, et al. Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela. BMC Biotechnology,2019,19:66.
KHATODIA S. Molecular characterization of Bt chickpea (Cicer arietinum L.) plants carrying cry1Aa3 gene. International Journal of Current Microbiology and Applied Sciences,2014,3:632-642.
KHATODIA S, KHARB P, BATRA P, et al. Development and characterization of transgenic chickpea (Cicer arietinum L.) plants with cry1Ac gene using tissue culture independent protocol. International Journal of Advanced Research,2014,2:323-331.
MEHROTRA M, SINGH A K, SANYAL I, et al. Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica,2011,182:87-102.
DAS A, DATTA S, SUJAYANAND G K, et al. Expression of chimeric Bt gene, Cry1Aabc in transgenic pigeonpea (cv. Asha) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Plant Cell, Tissue and Organ Culture,2016,127:705-715.
SINGH S, KUMAR N R, MANIRAJ R, et al. Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera. Scientific Reports,2018,8:8820.
BETT B, GOLLASCH S, MOORE A, et al. Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip3Ba protein are protected against the Maruca pod borer (Maruca vitrata). Plant Cell,Tissue and Organ Culture,2017,131:335-345.
KIM Y, KANG J, KIM J, et al. Effects of Bt transgenic Chinese cabbage on the herbivore Mamestra brassicae (Lepidoptera:Noctuidae) and its parasitoid Microplitis mediator (Hymenoptera:Braconidae). Journal of Economic Entomology,2008,101:1134-1139.
WANG Y, ZHANG Y, WANG F, et al. Development of transgenic Brassica napus with an optimized cry1C* gene for resistance to diamondback moth (Plutella xylostella). Canadian Journal of Plant Science,2014,94:1501-1506.
KESHAVAREDDY G, ROHINI S, RAMU S V, et al. Transgenics in groundnut (Arachis hypogaea L.) expressing cry1AcF gene for resistance to Spodoptera litura (F.). Physiology and Molecular Biology of Plants,2013,19:343-352.
TORRES J B, RUBERSON J R, ADANG M J. Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators:a tritrophic analysis. Agricultural and Forest Entomology,2006,8:191-202.
SIEBERT M, PATTERSON T G, GILLES G J, et al. Quantification of Cry1Ac and Cry1F Bacillus thuringiensis insecticidal proteins in selected transgenic cotton plant tissue types. Journal of Economic Entomology,2009,102:1301-1308.
WANG Q, ZHU Y, SUN L, et al. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds. Science China-life Sciences,2016,59:172-182.
RIBEIRO T P, ARRAES F B M, LOURENCO-TESSUTTI I T, et al. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil. Plant Biotechnology Journal,2017,15:997-1009.
LI S, WANG Z, ZHOU Y, et al. Expression of cry2Ah1 and two domain II mutants in transgenic tobacco confers high resistance to susceptible and Cry1Ac-resistant cotton bollworm. Scientific Reports,2018,8:508.
LUCIANI G, ALTPETER F, CHANG J, et al. Expression of cry1Fa in Bahiagrass enhances resistance to fall armyworm. Crop Science,2007,47:2430-2436.
MUDDANURU T, POLUMETLA A K, MADDUKURI L,et al. Development and evaluation of transgenic castor (Ricinus communis L.) expressing the insecticidal protein Cry1Aa of Bacillus thuringiensis against lepidopteran insect pests. Crop Protection,2019,119:113-125.
MAJUMDER S, DATTA K, SATPATHY S, et al. Development and evaluation of lepidopteran insect resistant jute expressing the fused Bt-Cry1Ab/Ac toxin driven by CaMV35S promoter. Industrial Crops and Products,2020,156:112873.
SINGH A K, DUBEY S K. Current trends in Bt crops and their fate on associated microbial community dynamics:a review. Protoplasma,2016,253:663-681.
LIU J, LIANG Y S, HU T, et al. Environmental fate of Bt proteins in soil:transport, adsorption/desorption and degradation. Ecotoxicology and Environmental Safety, 2021, 226:112805.
ZHANG L, SHEN W, FANG Z, et al. Effects of genetically modified maize expressing Cry1Ab and EPSPS proteins on Japanese quail. Poultry Science,2021,100:1068-1075.
GAO Y J, ZHU H J, CHEN Y, et al. Safety assessment of Bacillus thuringiensis insecticidal proteins Cry1C and Cry2A with a Zebrafish embryotoxicity test. Journal of Agricultural and Food Chemistry,2018,66:4336-4344.
DAI P L, JIA H R, GENG L L, et al. Bt toxin Cry1Ie causes no negative effects on survival, pollen consumption, or olfactory learning in worker Honey Bees (Hymenoptera:Apidae). Journal of Economic Entomology,2016,109:1028-1033.
WU F, JIANG Z, WANG B, et al. Biochemical analyses demonstrate that Bt maize has no adverse effects on Eisenia fetida. PLoS One,2022,17:e0269303.
LI Y, MEISSLE M, ROMEIS J. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green Lacewings, Chrysoperla carnea (Neuroptera:Chrysopidae). PLoS One,2008,3:e2909.
SHU Y, ZHANG Y, ZENG H, et al. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida. Chemosphere,2017,173:1-13.
LIU X, ZHANG Q, ZHAO J Z, et al. Effects of the Cry1Ac toxin of Bacillus thuringiensis on Microplitis mediator, a parasitoid of the cotton bollworm, Helicoverpa armigera. Entomologia Experimentalis et Applicata,2005,114(3):205-213.
ROLIM G D S, PLATA-RUEDA A, MARTINEZ L C, et al. Side effects of Bacillus thuringiensis on the parasitoid Palmistichus elaeisis (Hymenoptera:Eulophidae). Ecotoxicology and Environmental Safety,2020,189:109978.
AMICHOT M, CURTY C, GALLET A, et al. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis. Environmental Science and Pollution Research,2016,23:3097-3103.
徐重新,劉" 媛,李建宏,等. 基因工程抗體在微囊藻毒素檢測分析上的應用研究. 分析測試學報,2019,38(3):372-378.
YE R, CHEN H, LI H. One-pot synthesis of HRPamp;SA/ZIF-8 nanocomposite and its application in the detection of insecticidal crystalline protein Cry1Ab. Nanomaterials,2022,12:2679.
KANAGASUBBULAKSHMI S, KADIRVELU K. Paper-based simplified visual detection of Cry2Ab insecticide from transgenic cottonseed samples using integrated quantum dots-IgY antibodies. Journal of Agricultural and Food Chemistry,2021,69:4074-4080.
CHEN C X, WU J. A fast and sensitive quantitative lateral flow immunoassay for Cry1Ab based on a novel signal amplification conjugate. Sensors,2012,12(9):11684-11696.
LIANG J, WU Y, LIU C, et al. Preparation of high stable core/shell magnetic nanoparticles and application in Bacillus thuringiensis Cry1Ac proteins detection. Sensors and Actuators B:Chemical,2017, 241:758-764.
WALSCHUS U W E, WITT S, WITTMANN C. Development of monoclonal antibodies against Cry1Ab protein from Bacillus thuringiensis and their application in an ELISA for detection of transgenic Bt-maize. Food and Agricultural Immunology,2010,14:231-240.
DONG S, ZHANG X, LIU Y, et al. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Analytical and Bioanalytical Chemistry,2017,409:1985-1994.
PAUL V, STEINKE K, MEYER H H. Development and validation of a sensitive enzyme immunoassay for surveillance of Cry1Ab toxin in bovine blood plasma of cows fed Bt-maize (MON810). Analytica Chimica Acta,2008,607(1):106-113.
ZHANG X, XU C X, ZHANG C, et al. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naive mouse phage displayed library. Toxicon,2014,81:13-22.
WANG S, GUO A Y, ZHENG W J, et al. Development of ELISA for the determination of transgenic Bt-cottons using antibodies against Cry1Ac protein from Bacillus thuringiensis HD-73. Engineering in Life Sciences,2007,7:149-154.
LI M, ZHU M, ZHANG C Z, et al. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin. Toxins,2014,6(12):3208-3222.
ZHONG W J, LI G H, YU X L, et al. Sensitive detection of Bacillus thuringiensis Cry1B toxin based on camel single-domain antibodies. Microbiologyopen,2018,7(4):e00581.
ZHANG Y W, ZHANG W, LIU Y, et al. Development of monoclonal antibody-based sensitive ELISA for the determination of Cry1Ie protein in transgenic plant. Analytical and Bioanalytical Chemistry,2016,408(28):8231-8239.
SHEN C, HAO J, LI Y H, et al. Establishment of monoclonal antibody and scFv immuno-based assay for Cry2Aa toxin in spiked grain samples. Analytical Biochemistry,2023,677:115270.
LIU W X, LIU X R, LIU C, et al. Development of a sensitive monoclonal antibody-based sandwich ELISA to detect Vip3Aa in genetically modified crops. Biotechnology Letters,2020,42(8):1467-1478.
DONG S, GAO M, GUAN L, et al. Construction, expression, and identification of double light chain (VL-VL) antibody from a unique Bt Cry1-specific monoclonal antibody. Food Analytical Methods,2020,13:1570-1582.
DONG S, ZHANG C, LIU Y, et al. Simultaneous production of monoclonal antibodies against Bacillus thuringiensis (Bt) Cry1 toxins using a mixture immunization. Analytical Biochemistry,2017,531:60-66.
DONG S, BO Z, ZHANG C, et al. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library. Applied Microbiology and Biotechnology,2018,102:3363-3374.
SHEN C, MENG M, JIN J, et al. Establishment of novel receptor-antibody sandwich assays to broadly detect Bacillus thuringiensis Cry1 and Cry2 toxins. International Journal of Biological Macromolecules,2024,254:128034.
ZHANG X, LIU Y, ZHANG C, et al. Rapid isolation of single-chain antibodies from a human synthetic phage display library for detection of Bacillus thuringiensis (Bt) Cry1B toxin. Ecotoxicology and Environmental Safety,2012,81:84-90.
WANG Y, ZHANG X, ZHANG C, et al. Isolation of single chain variable fragment (scFv) specific for Cry1C toxin from human single fold scFv libraries. Toxicon,2012,60:1290-1297.
XU C X, ZHANG C, ZHONG J, et al. Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies. Journal of Agricultural and Food Chemistry,2017,65:6016-6022.
ZHONG J, HU X, ZHANG X, et al. Broad specificity immunoassay for detection of Bacillus thuringiensis Cry toxins through engineering of a single chain variable fragment with mutagenesis and screening. International Journal of Biological Macromolecules,2018,107:920-928.
XU C X, ZHANG X, LIU X, et al. Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins. Analytical Biochemistry, 2016, 512:70-77.
WANG P, LI G, YAN J, et al. Bactrian camel nanobody-based immunoassay for specific and sensitive detection of Cry1Fa toxin. Toxicon, 2014,92:186-192.
DONG S, LIU Y, ZHANG X, et al. Development of an immunochromatographic assay for the specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin. Analytical Biochemistry,2019,567:1-7.
ZENG H, WANG J, JIA J, et al. Development of a lateral flow test strip for simultaneous detection of BT-Cry1Ab, BT-Cry1Ac and CP4 EPSPS proteins in genetically modified crops. Food Chemistry,2021,335:127627.
SANTOS V O, PELEGRINI P B, MULINARI F, et al. A novel immunochromatographic strip test for rapid detection of Cry1Ac and Cry8Ka5 proteins in genetically modified crops. Analytical Methods,2015,7:9331-9339.
KUMAR R, SINGH C K, KAMLE S, et al. Development of nanocolloidal gold based immunochromatographic assay for rapid detection of transgenic vegetative insecticidal protein in genetically modified crops. Food Chemistry,2010,122:1298-1303.
KUMAR R. Development of dipsticks for simultaneous detection of vip3A and cry1Ab/cry1Ac transgenic proteins. Journal of AOAC International,2012,95:1131-1137.
徐重新,陳莎莎,張" 霄,等. 基于雙抗夾心的Cry1B毒素蛋白質TRFIA檢測方法的建立與評價. 江蘇農業(yè)學報,2013,29(1):184-188.
徐重新,楊晶祎,陸夢曉,等. 間接競爭時間分辨熒光免疫分析法檢測稻米中Cry1C毒素. 南京農業(yè)大學學報,2014,37(6):44-48.
XU C X, LIU X, ZHANG C, et al. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Analytical Biochemistry,2017,518:53-59.
徐重新,程" 誠,張" 霄,等. Bt Cry1F 毒素多克隆抗體制備及其檢測應用. 農產品質量與安全,2016(4):47-51.
ZHU X, CHEN L, SHEN P, et al. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay. Journal of Agricultural and Food Chemistry,2011,59:2184-2189.
QIU Y, YOU A, FU X, et al. Quantum-dot-bead-based fluorescence-linked immunosorbent assay for sensitive detection of Cry2A toxin in cereals using nanobodies. Foods,2022,11:2780.
QIU Y, YOU A, ZHANG M, et al. Phage-displayed nanobody-based fluorescence-linked immunosorbent assay for the detection of Cry3Bb toxin in corn. Lwt,2022,171:114094.
CHENG X, SUN L, LI R, et al. Organic polymer dot-based fluorometric determination of the activity of horseradish peroxidase and of the concentrations of glucose and the insecticidal protein toxin Cry1Ab/Ac. Mikrochim Acta,2019,186:731.
LIU C, ZHOU Z, ZOU L, et al. High sensitivity Bacillus thuringiensis Cry1Ac protein detections using fluorescein diacetate nanoparticles. Journal of Fluorescence,2016,26:451-457.
GIOVANNOLI C, ANFOSSI L, BAGGIANI C, et al. Binding properties of a monoclonal antibody against the Cry1Ab from Bacillus thuringensis for the development of a capillary electrophoresis competitive immunoassay. Analytical and Bioanalytical Chemistry,2008,392:385-393.
RODA A, MIRASOLI M, GUARDIGLI M, et al. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize. Analytical and Bioanalytical Chemistry,2006,384:1269-1275.
QIU Y, LI P, LIU B, et al. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals. Food and Agricultural Immunology,2019,30(1):924-936.
QIU Y L, LI P, DONG S, et al. Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody. Journal of Agricultural and Food Chemistry,2018,66(4):950-956.
GAO H F, WEN L K, HUA W, et al. Highly sensitive immunosensing platform for one-step detection of genetically modified crops. Scientific Reports,2019,9(1):16117.
BRANDO-DIAS P F P, DEATSCH A E, TANK J L, et al. Novel field-based protein detection method using light transmission spectroscopy and antibody functionalized gold nanoparticles. Nano Letters,2022,22(7):2611-2617.
GAO H, WEN L, WU Y, et al. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content. Biosensors Bioelectronics,2017,97:122-127.
ZHU M, LI M, LI G, et al. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline. Microchimica Acta,2015,182:2451-2459.
CHEN X, ZHANG D, LIN H, et al. MXene catalyzed Faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops. Sensors and Actuators B:Chemical,2021,346:130549 .
VOLPE G, AMMID N H, MOSCONE D, et al. Development of an immunomagnetic electrochemical sensor for detection of BT-CRY1AB/CRY1AC proteins in genetically modified corn samples. Analytical Letters,2006,39:1599-1609.
FREITAS M, CORRER W, CANCINO-BERNARDI J, et al. Impedimetric immunosensors for the detection of Cry1Ab protein from genetically modified maize seeds. Sensors and Actuators B:Chemical,2016,237:702-709.
LI J P, XU Q, WEI X P, et al. Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@Au nanoparticles. Journal of Agricultural and Food Chemistry,2013,61:1435-1440.
ZHOU Q, LI G, ZHANG Y, et al. Highly selective and sensitive electrochemical immunoassay of Cry1C using nanobody and π-π stacked graphene Oxide/Thionine assembly. Analytical Chemistry,2016,88:9830-9836.
MENG S, ZHANG N, LIU D, et al. Plasmonically enhanced photoelectrochemical immunoassay based on Au nanoparticle-loaded PAMAM dendrimers for Cry1Ab protein detection. ACS Applied Nano Materials,2020,3:9425-9432.
MENG S, LIU D, LI Y, et al. Engineering the signal transduction between CdTe and CdSe quantum dots for in situ ratiometric photoelectrochemical immunoassay of Cry1Ab protein. Journal of Agricultural and Food Chemistry,2022,70:13583-13591.
MENG S, LIU D, LI Y, et al. Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe. Journal of Hazardous Materials,2023,441:129759.
MENG S, LI Y, DONG N, et al. Portable visual photoelectrochemical biosensor based on a MgTi2O5/CdSe heterojunction and reversible electrochromic supercapacitor for dual-modal Cry1Ab protein detection. Analytical Chemistry,2023,95:18224-18232.
MING H, WANG M, YIN H. Detection of Bacillus thuringiensis Cry1Ab protein based on surface plasmon resonance immunosensor. Analytical Biochemistry,2015,468:59-65.
ALLEN R C, ROGELJ S, CORDOVA S E, et al. An immuno-PCR method for detecting Bacillus thuringiensis Cry1Ac toxin. Journal of Immunological Methods,2006,308:109-115.
LIU Y, JIANG D, LU X, et al. Phage-mediated immuno-PCR for ultrasensitive detection of Cry1Ac protein based on nanobody. Journal of Agricultural and Food Chemistry,2016,64:7882-7889.
徐重新,金嘉鳳,沈" 成,等. 具殺蟲功能的蛋白類生物材料研究進展. 農藥學學報,2023,25(5):990-1003.
DOWNING K J, THOMSON J A. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Canadian journal of Microbiology,2000,46:363-369.
QI G, LAN N, MA X, et al. Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin:using recombinant endophytic fungi to control aphids. Journal of Applied Microbiology, 2011, 110:1314-1322.
IWABUCHI K, MIYAMOTO K, JOURAKU A, et al. ABC transporter subfamily B1 as a susceptibility determinant of Bombyx mori larvae to Cry1Ba, Cry1Ia and Cry9Da toxins. Insect Biochemistry and Molecular Biology, 2023, 163:104030.
徐重新,劉" 媛,張" 霄,等. Bt Cry毒素抗蟲模擬物靶向創(chuàng)新設計. 生物工程學報,2023,39(2):446-458.
PARDO-LOPEZ L, SOBERON M, BRAVO A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews,2013,37:3-22.
WAN Z, CHEN Y, HU S, et al. A peptide Epitope-synthetic hydrogel polymer conjugate that mimics insecticidal protein receptors. Application in environmental and biological analysis. Chemical Engineering Journal,2023,451:138671.
WANG Y, ZHANG X, XIE Y, et al. High-affinity phage-displayed peptide as a recognition probe for the detection of Cry2Ad2-3. International Journal of Biological Macromolecules,2019,137:562-567.
LU X, JIANG D J, YAN J X, et al. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides. Talanta,2018,179:646-651.
JIN S, YE Z, WANG Y, et al. A novel impedimetric microfluidic analysis system for transgenic protein Cry1Ab detection. Scientific Reports,2017,7:43175.
CHEN K, HAN H, LOU Z, et al. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors. Biosensors Bioelectronics,2012,34:118-124.
(責任編輯:黃克玲)