沈楠趙永波黃東雅
·論 著·
帕金森病大鼠CD4+CD25highFoxP3+調(diào)節(jié)性T細胞的變化☆
沈楠*趙永波△黃東雅*
目的研究帕金森病(Parkinson’s disease,PD)大鼠外周血中調(diào)節(jié)性T細胞(regulatory T cells,Treg)的改變,并探討其與腦內(nèi)免疫炎癥反應(yīng)的相關(guān)性。方法SD大鼠隨機分為對照組、假手術(shù)組、PD 4周組、PD 2周組。PD 4周組和2周組定向注射6-羥多巴建立PD大鼠模型,假手術(shù)組注射PBS緩沖液,PD 2周組于術(shù)后第2周,其他組于術(shù)后第4周時,應(yīng)用免疫熒光染色法觀察各組大鼠黑質(zhì)處酪氨酸羥化酶(Tyrosine hydroxylase,TH)陽性神經(jīng)元、離子鈣接頭蛋白分子-1(Ionized calcium bindingadaptor molecule-1,iba-1)和膠原纖維酸性蛋白(Glial fibrillary acid protein,GFAP)陽性細胞數(shù)量及形態(tài)的改變,并通過流式細胞術(shù)(Flow cytometry,F(xiàn)CM)檢測其外周血中CD4+CD25highFoxP3+Treg占T淋巴細胞比例的變化。結(jié)果PD4周組TH陽性神經(jīng)元偏側(cè)毀損率(91.33%±8.53%)較對照組和假手術(shù)組增加(P<0.01),且較PD2周組(64.56%±17.94%)毀損更為嚴(yán)重(P<0.05)。PD4周組iba-1陽性細胞增加率(82.60%±11.52%)和GFAP陽性細胞增加率(86.62%±6.80%)較對照組及假手術(shù)組均增加(P<0.01),但PD 4周組較2周組iba-1陽性細胞增加率(104.89%±13.39%)和GFAP陽性細胞增加率(117.92%±15.34%)均減少(P<0.05)。FCM示PD4周組大鼠外周血中CD4+CD25highFoxP3+Treg占T淋巴細胞的比例(0.64%±0.08%)較對照組、假手術(shù)組及PD2周組均降低(P<0.01)。另外,外周血T淋巴細胞中Treg比例變化與TH陽性神經(jīng)元毀損率(r=-0.59,P<0.01)、iba-1陽性細胞增加率(r=-0.87,P<0.01)和GFAP陽性細胞增加率(r=-0.89,P<0.01)均呈負(fù)相關(guān)。結(jié)論PD大鼠外周血中Treg比例減少且可能與腦內(nèi)免疫炎癥反應(yīng)相關(guān)。
CD4+CD25highFoxP3+調(diào)節(jié)性T細胞 星形膠質(zhì)細胞 小膠質(zhì)細胞 帕金森病
帕金森病(Parkinson’s disease,PD)是最常見的神經(jīng)系統(tǒng)退行性疾病之一,現(xiàn)已有研究證實免疫因素在其中發(fā)揮重要作用,如外周血中CD4+CD25+調(diào)節(jié)性T細胞(regulatory T cells,Treg)減少易引起PD或加重PD程度[1],但是目前尚無研究表明PD疾病本身是否反之也會影響外周免疫功能。故本研究擬通過檢測不同病期PD大鼠外周血中Treg,觀察中樞神經(jīng)系統(tǒng)膠質(zhì)細胞的激活情況,初步了解PD是否會引起Treg的改變,并研究這種變化與中樞神經(jīng)系統(tǒng)免疫炎癥反應(yīng)間的相關(guān)性,以期為PD的早期診斷、早期治療提供新的靶點。
1.1 動物分組與模型制備健康雄性SD大鼠,體質(zhì)量250~270 g(同濟大學(xué)實驗動物中心提供),隨機分為對照組、假手術(shù)組、PD 4周組、PD 2周組,每組8只。
10%水合氯醛麻醉PD 4周組和PD 2周組大鼠后,固定于大鼠腦立體定位儀上(美國ASI公司),參照Paxinos《The Rat Brain》圖譜,選取右側(cè)黑質(zhì)致密部(坐標(biāo):前囟后5.3 mm,中縫旁開2.0 mm,硬膜下7.7 mm)和前腦內(nèi)側(cè)束(坐標(biāo):前囟后3.5 mm,中縫旁開2.0 mm,硬膜下8.6 mm)兩點為注射位點,每點注射3μL濃度為2μg/μL的6-羥多巴(6-hydmxydopamine,6-OHDA,美國sigma公司),注射速度為1 μL/min,留針10 min后退針。PD 4周組和PD 2周組大鼠分別于術(shù)后第4周及第2周組進行后續(xù)實驗。假手術(shù)組在同部位注射等體積的PBS緩沖液,并于術(shù)后第4周進行后續(xù)實驗。對照組大鼠正常飼養(yǎng),不注射任何試劑,與假手術(shù)組及PD 4周組同時進行后續(xù)實驗。
1.2 行為學(xué)檢測PD 4周組和PD 2周組大鼠分別于注射6-OHDA后第4周及第2周腹腔注射0.5 mg/kg阿撲嗎啡(美國sigma公司)觀察并記錄30 min的旋轉(zhuǎn)圈數(shù);對照組及假手術(shù)組大鼠于相應(yīng)處理后第4周注射等量阿撲嗎啡并觀察記錄。
1.3 外周血CD4+CD25highFoxP3+Treg流式細胞術(shù)檢測所有大鼠各采集外周血1.5 mL,肝素抗凝搖勻。全血樣品應(yīng)用密度梯度離心法分離出單個核細胞后分別加入抗大鼠FITC-CD4、PerCP eFluor 710-CD25抗體(美國eBioscience公司)各1.5 μL,經(jīng)孵育、洗滌和破膜固定后再加入PE-FoxP3抗體(美國eBioscience公司)5 μL,孵育洗滌后上流式細胞儀(美國BD公司)檢測。
1.4 TH與iba-1、TH與GFAP免疫熒光雙標(biāo)染色4%多聚甲醛灌注固定大鼠后斷頭取腦,將腦組織脫水后冰凍連續(xù)冠狀切片(片厚40 μm)。通過免疫熒光染色法對腦片黑質(zhì)部位進行酪氨酸羥化酶(tyrosine hydroxylase,TH)與離子鈣接頭蛋白分子-1(ionized calcium bindingadaptor molecule-1,iba-1)陽性細胞、TH與膠原纖維酸性蛋白(glial fi?brillary acid protein,GFAP)陽性細胞的雙標(biāo)染色,具體步驟如下:檸檬酸鈉修復(fù)液抗原熱修復(fù)5min,加入1:20000的鼠源性TH(美國sigma公司)和1:2000的兔源性iba-1(日本W(wǎng)ako公司)一抗,室溫孵育60 min后4℃過夜;加入DAM488(美國invitrogen公司)和生物素標(biāo)記的抗鼠源性的二抗(美國vector實驗室),室溫避光孵育3 h;加入Hoechst和Avi-cy3,室溫避光孵育60 min;描片、晾干、封片后鏡下觀察。另取腦片行TH和GFAP雙標(biāo)染色,加入1:20000的鼠源性TH和1:1000的兔源性GFAP(丹麥Dako公司)一抗,余步驟同上。
1.5 結(jié)果判定每只大鼠的每個檢測指標(biāo)選用6張切片,在同一光強度下分別計數(shù)腦片兩側(cè)的TH、iba-1、GFAP陽性細胞數(shù)。偏側(cè)TH陽性神經(jīng)元的毀損率=(健側(cè)TH陽性神經(jīng)元數(shù)-毀損側(cè)陽性神經(jīng)元數(shù))/健側(cè)陽性細胞數(shù)×100%;偏側(cè)iba-1、GFAP陽性細胞數(shù)的增加率=(毀損側(cè)iba-1、GFAP陽性細胞數(shù)-健側(cè)陽性細胞數(shù))/健側(cè)陽性細胞數(shù)×100%。
1.6 統(tǒng)計學(xué)方法采用SPSS17.0進行統(tǒng)計學(xué)分析。多組間外周血中CD4+CD25highFoxP3+Treg比例的比較直接采用方差分析。多組間TH陽性神經(jīng)元偏側(cè)毀損率、iba-1和GFAP陽性細胞增加率比較時發(fā)現(xiàn)各樣本總體方差不齊,故將所有數(shù)據(jù)進行平方根轉(zhuǎn)換,驗證方差齊性后使用方差分析,進一步兩兩比較均應(yīng)用LSD-t檢驗分析。Treg比例變化與TH陽性神經(jīng)元毀損率及iba-1、GFAP陽性細胞增加率的相關(guān)性分析采用Pearson相關(guān)分析。檢驗水準(zhǔn)α=0.05。
2.1 行為學(xué)觀察部分PD大鼠腹腔注射阿撲嗎啡后可誘導(dǎo)出旋轉(zhuǎn)行為,表現(xiàn)為向健側(cè)旋轉(zhuǎn),呈首尾相接。對照組及假手術(shù)組注射阿撲嗎啡后無旋轉(zhuǎn)行為發(fā)生(見表1)。
2.2 大鼠黑質(zhì)TH陽性神經(jīng)元染色結(jié)果對照組及假手術(shù)組黑質(zhì)兩側(cè)TH陽性神經(jīng)元分布較多且密集,PD 4周組和PD 2周組毀損側(cè)TH陽性神經(jīng)元均明顯減少(見圖1、2)。四組大鼠TH陽性神經(jīng)元偏側(cè)毀損率有統(tǒng)計學(xué)差異(F=218.83,P<0.01)。其中,PD 4周組TH陽性神經(jīng)元偏側(cè)毀損率較對照組和假手術(shù)組均增加(P<0.01),且較PD 2周組毀損也更為嚴(yán)重(P<0.05)(見表2)。
2.3 大鼠黑質(zhì)iba-1、GFAP陽性細胞染色結(jié)果對照組黑質(zhì)兩側(cè)iba-1陽性細胞分布均勻而GFAP陽性細胞則較少,假手術(shù)組iba-1和GFAP陽性細胞都在針道附近聚集激活,其它部位分布尚均勻。PD4周組和PD2周組大鼠iba-1和GFAP陽性細胞則均在毀損側(cè)黑質(zhì)處聚集激活且數(shù)量增加,激活后的細胞染色加深,突起變短增粗(見圖1、2)。四組大鼠iba-1陽性細胞增加率(F=159.40,P<0.01)和GFAP陽性細胞增加率(F=178.32,P<0.01)有統(tǒng)計學(xué)差異。其中,PD 4周組iba-1和GFAP陽性細胞增加率較對照組及假手術(shù)組均增加(P<0.01),但是PD 4周組較2周組這兩種膠質(zhì)細胞的增加率均減少(P<0.05)(見表2)。
2.4 大鼠外周血中CD4+CD25highFoxP3+Treg占T淋巴細胞比例四組大鼠外周血中CD4+CD25highFoxP3+Treg占T淋巴細胞的比例分別為對照組(1.27%±0.06%),假手術(shù)組(0.88%±0.04%),PD 4周組(0.64%±0.08%),PD 2周組(0.85%±
表1 大鼠阿撲嗎啡誘導(dǎo)旋轉(zhuǎn)運動的情況(只)
表2 各組TH、iba-1、GFAP陽性細胞變化率
0.12 %)。四組間差異有統(tǒng)計學(xué)意義(F=63.20,P<0.01)。其中,PD 4周組CD4+CD25highFoxP3+Treg占T淋巴細胞的比例比對照組、假手術(shù)組及PD 2周組均降低(P<0.01)。PD 2周組和假手術(shù)組CD4+CD25highFoxP3+Treg占T淋巴細胞的比例均比對照組低(P<0.01),PD 2周組與假手術(shù)組相比無統(tǒng)計學(xué)差異(P>0.05)(見圖3)。
2.5 Treg比例變化與TH陽性神經(jīng)元毀損率及iba-1、GFAP陽性細胞增加率的相關(guān)性外周血中Treg占T淋巴細胞比例的變化與TH陽性神經(jīng)元毀損率(r=-0.59,P<0.01)、iba-1陽性細胞增加率(r=-0.87,P<0.01)和GFAP陽性細胞增加率(r=-0.89,P<0.01)均呈負(fù)相關(guān)。
Treg具有免疫調(diào)節(jié)、免疫抑制功能,在維持機體外周免疫耐受、預(yù)防自身免疫性疾病的發(fā)生發(fā)展中發(fā)揮重要作用[2],近期有研究表明Treg與神經(jīng)系統(tǒng)疾病密切相關(guān)[3-5]。CD4+CD25highTreg是Treg的主要組成部分并能特異性地表達叉頭樣轉(zhuǎn)錄因子FoxP3[6]。本研究發(fā)現(xiàn)PD大鼠外周血中CD4+CD25highFoxP3+Treg占T淋巴細胞比例明顯低于對照組及假手術(shù)組,且TH(多巴胺能神經(jīng)元特異性標(biāo)志物)陽性神經(jīng)元損傷越嚴(yán)重Treg降低越明顯。
小膠質(zhì)細胞和星形膠質(zhì)細胞均參與腦內(nèi)的免疫炎癥反應(yīng),既往有研究表明PD動物甚至患者腦內(nèi)都存在小膠質(zhì)細胞和星形膠質(zhì)細胞增生和激活的情況[7-9]。本研究結(jié)果也證實了這一現(xiàn)象,并進一步發(fā)現(xiàn)多巴胺能神經(jīng)元損傷時間及程度不同,膠質(zhì)細胞激活情況也不同。多巴胺能神經(jīng)元損傷早期較晚期,iba-1(小膠質(zhì)細胞特異性標(biāo)志物)陽性細胞和GFAP(星形膠質(zhì)細胞特異性標(biāo)志物)陽性細胞增生激活更為明顯。
圖1 黑質(zhì)處TH陽性神經(jīng)元和iba-1陽性細胞染色結(jié)果(4×)(iba-1/TH雙標(biāo))(綠色箭頭示TH陽性神經(jīng)元減少區(qū)域,紅色箭頭示iba-1陽性細胞增加激活區(qū)域)。A:對照組;B:假手術(shù)組;C:PD2周組;D:PD4周組
圖2 黑質(zhì)處TH陽性神經(jīng)元和GFAP陽性細胞染色結(jié)果(4×)(GFAP/TH雙標(biāo))(綠色箭頭示TH陽性神經(jīng)元減少區(qū)域,紅色箭頭示GFAP陽性細胞增加激活區(qū)域)。A:對照組;B:假手術(shù)組;C:PD2周組;D:PD4周組
圖3 CD4+CD25highFoxP3+Treg流式細胞檢測圖,A、B、E、F為CD4+CD25highTreg在外周血T淋巴細胞中所占比例,C、D、G、H為FoxP3在CD4+CD25highTreg中所占比例
Chi等[1]研究顯示,基因敲除水通道蛋白-4 (Aquaporin-4,AQP4)可引起小鼠體內(nèi)CD4+CD25+Treg的減少,這些小鼠腹腔注射能夠引起PD的藥物1-甲基-4-苯基-1、2、3、6-四氫吡啶(1-Meth?yl-4-Phenyl-1,2,3,6-etrahydropyridine,MPTP)后,黑質(zhì)多巴胺能神經(jīng)元的損傷程度較正常小鼠注射后更為嚴(yán)重,因而提出Treg可能是PD的保護性因素。由此,我們嘗試研究PD疾病本身是否也能夠引起Treg的改變,并進一步探索引起Treg改變的原因。
我們的研究發(fā)現(xiàn),PD大鼠腦內(nèi)膠質(zhì)細胞增生激活的同時,外周血中CD4+CD25highFoxP3+Treg的比例在降低,且二者發(fā)生具有相關(guān)性。這提示PD發(fā)生發(fā)展過程中,CD4+CD25highFoxP3+Treg的比例的降低可能與腦內(nèi)免疫炎癥反應(yīng)有關(guān)。我們猜測,PD大鼠多巴胺能神經(jīng)元的損傷引起了小膠質(zhì)細胞和星形膠質(zhì)細胞的增生激活,增生激活后的膠質(zhì)細胞會分泌IL-1、IL-6及TNF-α等多種炎癥因子[10,11],這些炎癥因子通過破損的血腦屏障入血干擾Treg的增殖和活性[12],從而引起Treg比例的降低。另外本研究發(fā)現(xiàn),PD2周組大鼠膠質(zhì)細胞增生激活較4周組顯著,而PD4周組大鼠外周血中CD4+CD25highFoxP3+Treg比例降低則更為明顯。我們推測,這是由于膠質(zhì)細胞激活分泌的多種炎癥因子入血后主要是干擾Treg的增殖,對現(xiàn)已存在的Treg比例影響不大,所以Treg的改變在PD病程中相對于膠質(zhì)細胞表現(xiàn)有滯后性。
本研究也具有一定的局限性,我們只是觀察了PD大鼠外周血中Treg數(shù)量的變化,并未涉及Treg功能狀態(tài)的檢測,所以我們將在進一步的研究中檢測PD大鼠體內(nèi)CD4+CD25highFoxP3+Treg的功能狀態(tài)及血清和腦脊液中多種炎癥因子的水平,并在體外實驗中將膠質(zhì)細胞激活后的培養(yǎng)液與CD4+CD25highFoxP3+Treg共培養(yǎng),觀察Treg的存活及增殖情況,這將有助于進一步闡明PD引起CD4+CD25highFoxP3+Treg比例減少的基本機制。
[1]Chi Y,Fan Y,He L,et al.Novel role of aduaporin-4 in CD4+ CD25+T regulatory cell development and severity of Parkinson’s disease[J].Aging Cell,2011,10(3):368-382.
[2]Maloy KJ,Salaun L,Cahill R,et al.CD4+CD25+T(R)cells sup?press innate immune pathology through cytokine-dependent mechanisms[J].J Exp Med,2003,197(1):111-119.
[3]Beers DR,Henkel JS,Zhao W,et al.Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyo?trophic lateral sclerosis[J].Brain,2011,134(5):1293-1314.
[4]Reynolds AD,Banerjee R,Liu J,et al.Neuroprotective activi?ties of CD4+CD25+regulatory T cells in an animal model of Parkinson's disease[J].J Leukoc Biol,2007,82(5):1083-1094. [5]Rosenkranz D,Weyer S,Tolosa E,et al.Higher frequency of regulatory T cells in the elderly and increased suppressive ac?tivity in neurodegeneration[J].J Neuroimmunol,2007,188(1-2):117-127.
[6]Hori S,Sakaguch S.Foxp3:a critical regulator of the develop?ment and function of regulatory T cells[J].Microbes Infect, 2004,6(8):745-751.
[7]Zhang W,Phillips K,Wielgus AR,et al.Neuromelanin acti?vates microglia and induces degeneration of dopaminergic neu?rons:implications for progression of Parkinson’s disease[J]. Neurotox Res,2011,19(1):63-72.
[8]Perry VH,Nicoll JAR,Holmes C.Microglia in neurodegenera?tive disease[J].Nat Rev Neurol,2010,4(6):193-201.
[9]Zhang ZJ,Xia CL,Dong YL,et al.Astrocyte reactivity in relat?ed brain regions in a mouse model of MPTP-induced Parkin?son’s disease[J].Neural Regen Res,2009,4(2):129-134.
[10]Long-Smith CM,Sullivan AM,Nolan YM.The influence of mi?croglia on the pathogenesis of Parkinson's disease[J].Prog Neu?robiol,2009,89(3):277-287.
[11]Watkins LR,Milligan ED,Maier SF.Glial activation:a driving force for pathological pain[J].Trends Neurosci,2001,24(8): 450-455.
[12]Pasare C,Medzhitov R.Toll pathway-dependent blockade of CD4+CD25+T cell-mediated suppression by dendritic cells[J]. Science,2003,299(5609):1033-1036.
The changes of CD4+CD25highFoxP3+regulatory T cells in peripheral blood of Parkinson's disease rats.
SHEN Nan,ZHAO Yongbo,HUANG Dongya.Department of Neurology,First People's Hospital Affiliated to Shanghai Jiaotong University,Shanghai 200080,China.Tel:021-63240090.
ObjectiveTo investigate the changes of regulatory T cells(Treg)in peripheral blood in the rat model of Parkinson’s disease(PD)and to study the correlation between the T cell changes and inflammation in the brain.Meth?odsSprague-Dawley rats were randomly divided into four groups:control group,sham-operated group,PD 4-week group and PD 2-week group.PD model was induced by 6-hydroxydopamine(6-OHDA).Immunofluorescence staining was used to detect the morphological and number of tyrosine hydroxylase(TH),ionized calcium bindingadaptor molecule-1(iba-1)and glial fibrillary acid protein(GFAP)positive cells in the substantia nigra.Flow cytometry(FCM)was used to examine CD4+CD25highFoxP3+Treg in the peripheral blood.ResultsThe relative neuronal loss of TH-positive cells in PD 4-week group was(91.33%±8.53%),which was significantly higher than that in control group and sham-operated group(P<0.01).The relative neuronal loss of TH-positive cells was more severe in PD 4-week group than that in PD 2-week group(64.56%±17.94%vs.91.33%±8.53%)(P<0.05).Meanwhile,in PD 4-week group,both iba-1-positive cells (82.60%±11.52%)and GFAP-positive cells(86.62%±6.80%)increased significantly,comparing with control group and sham-operated group(P<0.01).Interestingly,the increase in iba-1-positive cells(104.89%±13.39%)and GFAP-posi?tive cells(117.92%±15.34%)was more obvious in PD 2-week group than in PD 4-week group(P<0.05).Furthermore, FCM showed that the proportion of CD4+CD25highFoxP3+Treg in the peripheral blood in PD 4-week group was 0.64%± 0.08%,which was significantly lower than that in control group,sham-operated group and PD 2-weeks group(P<0.01). In addition,the changes of Treg in peripheral blood was negatively correlated with the neuronal loss of TH-positive cells (r=-0.59,P<0.01),and with the increase in iba-1 positive cells(r=-0.87,P<0.01)and GFAP positive cells(r=-0.89, P<0.01).Conclusions The present study have detected a decrease in Treg cell numbers in the peripheral blood in the rat model of PD,which may be related with the inflammation in the brain.
CD4+CD25highFoxP3+regulatory T cells Astrocyte Microglia Parkinson’s disease
R392
A
2012-12-12)
(責(zé)任編輯:李立)
10.3936/j.issn.1002-0152.2013.08.008
☆ 上海市科委基礎(chǔ)研究重點項目(編號:11JC1411402)
* 上海市同濟大學(xué)附屬東方醫(yī)院神經(jīng)內(nèi)科(上海 200120)
△上海交通大學(xué)附屬第一人民醫(yī)院神經(jīng)內(nèi)科