張 巍,張永剛,鄭國權(quán),張如意,趙 斌,王 巖
解放軍總醫(yī)院 骨科,北京 100853
Staple半側(cè)加壓造成山羊胸椎不平衡發(fā)展的組織學(xué)觀察
張 巍,張永剛,鄭國權(quán),張如意,趙 斌,王 巖
解放軍總醫(yī)院 骨科,北京 100853
目的通過對(duì)Staple固定、加壓生長期山羊胸椎的組織學(xué)觀察,探討加壓側(cè)對(duì)脊柱生長發(fā)育的影響。方法9只未成年雌性山羊隨機(jī)分為實(shí)驗(yàn)組(n=6)和對(duì)照組(n=3);實(shí)驗(yàn)組采用單側(cè)多節(jié)段(T6-T11)跨椎間隙Staple固定;對(duì)照組只作相同切口暴露,不進(jìn)行固定。4個(gè)月后獲取T8、T9間隙(對(duì)照組相應(yīng)節(jié)段)椎間盤及生長板,采用HE、Giemsa染色,鏡下觀察生長板及椎間盤情況。結(jié)果對(duì)照組未出現(xiàn)脊柱側(cè)凸畸形,兩側(cè)生長板高度以及生長板肥大層細(xì)胞和終板軟骨細(xì)胞形態(tài)無明顯差異。實(shí)驗(yàn)組出現(xiàn)輕度脊柱側(cè)凸畸形,術(shù)后4個(gè)月Cobb角為17.9 °±5.6 °;椎間隙上方生長板高度:加壓側(cè)(1.27±0.34) mm低于非加壓側(cè)的(2.05±0.19) mm,椎間隙下方生長板高度加壓側(cè)(0.77±0.31) mm也低于非加壓側(cè)的(2.1±0.29) mm;加壓側(cè)生長板肥大層細(xì)胞數(shù)量少、形態(tài)異常、排列不規(guī)則,非加壓側(cè)生長板肥大層細(xì)胞排列整齊,細(xì)胞形態(tài)飽滿,胞質(zhì)豐富,細(xì)胞核完整,與對(duì)照組無差別;終板軟骨細(xì)胞也呈同樣變化,加壓側(cè)與非加壓側(cè)軟骨細(xì)胞數(shù)量明顯減少,排列不緊密,細(xì)胞體積小,胞質(zhì)較少,胞核扁平。結(jié)論半側(cè)固定、加壓抑制了固定側(cè)脊柱生長板及終板軟骨細(xì)胞的發(fā)育,可造成脊柱兩側(cè)不平衡發(fā)展。
Staple;脊柱側(cè)凸;生長板;組織學(xué)
有研究[1-2]表明,骨骺軟骨對(duì)機(jī)械性壓力十分敏感,壓力高的一側(cè)骨骺生長會(huì)減慢,因此有可能通過半側(cè)骨骺加壓來控制脊柱生長。本研究在山羊胸椎單側(cè)植入記憶合金Staple并對(duì)該側(cè)加壓,組織學(xué)觀察兩側(cè)生長板發(fā)育情況,并同正常生長板對(duì)比,旨在探討單側(cè)壓力負(fù)荷在調(diào)節(jié)脊柱生長中的作用。
1 實(shí)驗(yàn)動(dòng)物 年齡2 ~ 3個(gè)月的健康雌性山羊10只,體質(zhì)量6 ~ 10 kg(由解放軍總醫(yī)院動(dòng)物中心提供),隨機(jī)分為實(shí)驗(yàn)組(n=6)和對(duì)照組(n=3)。
2 手術(shù)過程 1)實(shí)驗(yàn)組[3]:麻醉后經(jīng)口氣管插管,呼吸機(jī)輔助呼吸。動(dòng)物取左側(cè)臥位,切除第7肋骨,開胸,顯露T6~ T11椎體;將5 mm記憶合金矯形釘置于冰水混合物中,用撐開鉗把兩齒撐開至10 mm,使矯形釘由原始的“C”形變成開口的矩形,備用;使用椎體開口器跨T6、T7椎間隙于肋橫突關(guān)節(jié)側(cè)前方T6椎體下端和T7椎體上端打孔,將撐開的記憶合金矯形釘植入孔道內(nèi),錘擊、壓緊;同法,依次于T7、T8,T8、T9,T9、T10,T10、T11椎間隙側(cè)前方植入Staple,每個(gè)間隙2枚,共10枚;接著用40 ° ~ 50 °的0.9%氯化鈉注射液水紗布覆蓋記憶合金矯形釘,使之形變;最后將第6和第8肋骨靠攏、縫合、關(guān)閉胸腔;術(shù)后動(dòng)物有自主呼吸和咀嚼動(dòng)作后,拔除氣管插管。2)對(duì)照組:做相同切口顯露,只切除第7肋骨,靠攏、縫合第6和第8肋骨,關(guān)閉胸腔而不進(jìn)行內(nèi)固定。
3 觀察方法 所有山羊術(shù)后即刻以及術(shù)后2個(gè)月、4個(gè)月分別進(jìn)行X線檢查,4個(gè)月后處死山羊,獲取實(shí)驗(yàn)組山羊T8、T9間隙椎間盤及生長板,對(duì)照組在相應(yīng)節(jié)段取材。大體觀察頂椎及相鄰椎體生長板高度以及椎間盤變化情況。所有標(biāo)本均冠狀面解剖,進(jìn)行自身兩側(cè)對(duì)照。將標(biāo)本用酒精固定、梯度脫水、透明、包埋、切片等程序后,進(jìn)行Giemsa染色和HE染色,顯微鏡下觀察椎體兩側(cè)生長板高度、肥大細(xì)胞形態(tài)變化以及骨骺軟骨細(xì)胞的形態(tài)和排列變化情況。
4 統(tǒng)計(jì)學(xué)分析 SPSS12.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,兩側(cè)生長板高度比較采用完全隨機(jī)設(shè)計(jì)的t檢驗(yàn)法。檢驗(yàn)的顯著性水準(zhǔn)均設(shè)定在α=0.05。
1 放射學(xué)評(píng)估 對(duì)照組山羊均未出現(xiàn)脊柱側(cè)凸。實(shí)驗(yàn)組山羊在2個(gè)月時(shí)開始產(chǎn)生脊柱側(cè)凸,4個(gè)月時(shí)產(chǎn)生輕度的脊柱側(cè)凸,Cobb角為17.9 °±5.6 ° (圖1),兩組差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
2 標(biāo)本組織學(xué) Giemsa染色:對(duì)照組:切片直接觀察可見生長板兩側(cè)高度差異無統(tǒng)計(jì)學(xué)意義(P>0.05),椎間盤無楔形變。實(shí)驗(yàn)組:椎間隙上方生長板高度加壓側(cè)(1.27±0.34) mm,非加壓側(cè)(2.05±0.19) mm,椎間隙下方生長板高度加壓側(cè)(0.77±0.31) mm,非加壓側(cè)(2.1±0.29) mm(圖2),差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。
3 HE染色 對(duì)照組:低倍鏡下兩側(cè)椎間隙等高。高倍顯微鏡下生長板的各層(靜止層、肥大層、增殖層、鈣化層)細(xì)胞高度及細(xì)胞形態(tài)無明顯差別。實(shí)驗(yàn)組:低倍鏡下椎間盤楔形變明顯,非加壓側(cè)高于加壓側(cè)。高倍鏡下生長板非加壓側(cè)可見肥大層細(xì)胞排列整齊,高度基本一致,細(xì)胞形態(tài)飽滿,胞質(zhì)豐富,細(xì)胞核完整,與對(duì)照組無差別;加壓側(cè)見肥大層細(xì)胞凌亂,高度不等,細(xì)胞形態(tài)大小不一,胞質(zhì)不豐富,細(xì)胞核少且不完整;骨骺軟骨細(xì)胞也呈同樣變化,加壓側(cè)比非加壓側(cè)軟骨細(xì)胞數(shù)量明顯減少,排列不緊密,散在分布,細(xì)胞體積小,胞核扁平,胞質(zhì)較少(圖3 ~ 4)。
圖 1 術(shù)后4個(gè)月,實(shí)驗(yàn)組山羊出現(xiàn)輕度的脊柱側(cè)凸, 其中一只Cobb 角為26 °圖 2 在實(shí)驗(yàn)組T8、 T9間隙,生長板高度加壓側(cè)低于非加壓側(cè)圖 3 非加壓側(cè)肥大層細(xì)胞排列整齊,形態(tài)飽滿(Χ100)圖 4 加壓側(cè)肥大層細(xì)胞排列紊亂,發(fā)育不良(Χ100)Fig. 1 Mild scoliosis in experimental group 4 months after operation with a Cobb angle of 26 °in 1 animalFig. 2 Height of growth plate between T8and T9is shorter in compression side than in non- compression sideFig. 3 Regular arrangement and normal morphology of mastocytes in non-compression side (×100)Fig. 4 Irregular arrangement and dysplasia of mastocytes in compression side (×100)
脊柱在生長發(fā)育過程中存在多個(gè)生長中心,這樣就有可能通過控制某個(gè)生長中心的發(fā)育來改變脊柱的生長方向。椎體和長骨的生長模式一樣,其高度的增加是椎體上下兩端骨骺軟骨內(nèi)化骨的結(jié)果,因此對(duì)椎體骨骺進(jìn)行加壓固定,也極有可能像限制長骨生長一樣,限制椎體的生長[4]。本實(shí)驗(yàn)采用目前國際上廣為流行大動(dòng)物-生長期的山羊作為研究對(duì)象,在山羊胸椎單側(cè)植入Staple,記憶合金在恢復(fù)形變過程中可以產(chǎn)生持續(xù)的壓力[3],因此通過半側(cè)骨骺加壓成功地控制了山羊脊柱的生長,制造了胸椎側(cè)凸模型。X線結(jié)果和大體標(biāo)本均證實(shí)山羊胸椎側(cè)凸凸向非加壓側(cè),意味著加壓側(cè)脊柱生長受到限制,其生長速度慢于非加壓側(cè),與Bylski-Austrow等[5]的實(shí)驗(yàn)結(jié)果基本一致。
Bylski-Austrow等[6]的研究認(rèn)為,椎體的生長同椎體生長板的關(guān)系密切,椎體生長板發(fā)揮著與長骨骨骺相同的作用,是脊柱縱向生長的最重要結(jié)構(gòu)。椎體的縱向生長,是椎體上下兩端生長板軟骨內(nèi)化骨的結(jié)果,而軟骨由軟骨細(xì)胞和軟骨基質(zhì)組成,在人類長骨的生長過程中,有44% ~ 59%來源于軟骨細(xì)胞高度的增加,其他來源于軟骨細(xì)胞分泌的軟骨基質(zhì)[7],其構(gòu)成軟骨細(xì)胞生活的微環(huán)境。細(xì)胞外基質(zhì)既可敏感地反映細(xì)胞生命活動(dòng)的變化,亦能對(duì)其產(chǎn)生重要影響,其主要組成成分是膠原纖維、蛋白多糖、堿性磷酸酶等,這些成分很容易受到力學(xué)因素的影響[8]。
Stoke等在小鼠第7尾椎單側(cè)分別給予縱向壓力和張力,結(jié)果表明,壓力側(cè)椎體的生長率是對(duì)照組的52%、而張力側(cè)則為113%,在縱向生長方向上生長板肥大區(qū)的高度及肥大軟骨細(xì)胞的成熟度與椎體生長率呈明顯正相關(guān)[9]。此外他們還發(fā)現(xiàn),軟骨細(xì)胞增殖速率及基質(zhì)增加均受力學(xué)負(fù)荷調(diào)節(jié),二者共同參與對(duì)椎體生長板生長的影響。本研究采用的山羊側(cè)凸模型是目前研究脊柱側(cè)凸比較好的大動(dòng)物模型,取材后,切片Giemsa染色直接觀察到實(shí)驗(yàn)組加壓側(cè)與非加壓側(cè)生長板高度不同,加壓側(cè)明顯低于非加壓側(cè),說明加壓側(cè)受到力學(xué)影響后,生長較對(duì)側(cè)緩慢,而非加壓側(cè)未受到壓力影響,正常發(fā)育,與對(duì)照組同節(jié)段生長板高度無差別。HE染色切片上,生長板非加壓側(cè)肥大層細(xì)胞排列整齊,細(xì)胞形態(tài)飽滿,而肥大層細(xì)胞凌亂,高度不等,細(xì)胞形態(tài)大小不一。終板軟骨細(xì)胞也呈同樣變化,凹側(cè)比凸側(cè)軟骨細(xì)胞數(shù)量明顯減少,排列不緊密,散在分布,細(xì)胞體積小。由于軟骨細(xì)胞的最終分化與細(xì)胞的體積以及細(xì)胞分泌的細(xì)胞外基質(zhì)(包括膠原,堿性磷酸酶等)密切相關(guān)[9],因此生長板增殖區(qū)、肥大區(qū)軟骨細(xì)胞的異常結(jié)構(gòu)和排列必然導(dǎo)致軟骨細(xì)胞分泌及分化功能下降,最終影響軟骨化骨,導(dǎo)致加壓側(cè)生長緩慢,脊柱兩側(cè)生長不平衡,出現(xiàn)側(cè)凸畸形。
本研究觀察到半側(cè)骨骺加壓產(chǎn)生的不對(duì)稱力學(xué)負(fù)荷對(duì)山羊胸椎生長板的組織學(xué)影響,豐富了半骨骺加壓理論,為采用不對(duì)稱力學(xué)定向控制脊柱生長提供了理論基礎(chǔ)。
1 Shi L, Wang L, Guo Z, et al. A study of low elastic modulus expandable pedicle screws in osteoporotic sheep[J]. J Spinal Disord Tech, 2012, 25(2):123-128.
2 Kumar B, Bylski-Austrow DI, Liu Y. Finite element model of spinal hemiepiphysiodesis: effect of contact conditions, initial conditions,and growth[J]. Stud Health Technol Inform, 2012, 176:99-103.
3 張永剛,張巍,鄭國權(quán),等. 記憶合金加壓釘抑制山羊半側(cè)脊柱生長的實(shí)驗(yàn)研究[J]. 中華外科雜志, 2007, 45(8):537-539.
4 Tompkins M, Eberson C, Ehrlich M. Hemiepiphyseal stapling for ankle valgus in multiple hereditary exostoses[J]. Am J Orthop (Belle Mead NJ), 2012, 41(2): 23-26.
5 Bylski-Austrow DI, Glos DL, Sauser FE, et al. In vivo dynamic compressive stresses in the disc annulus: a pilot study of bilateral differences due to hemiepiphyseal implant in a quadruped model[J]. Spine(Phila Pa 1976), 2012, 37(16):E949-E956.
6 Bylski-Austrow DI, Wall EJ, Glos DL, et al. Spinal hemiepiphysiodesis decreases the size of vertebral growth plate hypertrophic zone and cells[J]. J Bone Joint Surg Am, 2009, 91(3):584-593.
7 Damron TA, Zhang M, Pritchard MR, et al. Microarray cluster analysis of irradiated growth plate zones following laser microdissection[J]. Int J Radiat Oncol Biol Phys, 2009, 74(3):949-956.
8 Garzón-Alvarado DA. A mathematical model of the growth plate[J]. J Mech Med Biol, 2011, 11(5): 1213-1240.
9 Villemure I, Stokes IA. Growth plate mechanics and mechanobiology. A survey of present understanding[J]. J Biomech, 2009, 42(12):1793-1803.
Histology of thoracic vertebral imbalanced development in goats after hemiepiphyseal staple compression
ZHANG Wei, ZHANG Yong-gang, ZHENG Guo-quan, ZHANG Ru-yi, ZHAO Bin, WANG Yan
Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
ZHANG Yong-gang. Email: zhangyg301@hotmail.com
ObjectiveTo study the effect of hemiepiphyseal compression on spinal growth by observing the histology of thoracic vertebrae after staple fixation.MethodsNine premature female goats were randomly divided into experimental group (n=6) and control group (n=3). Thoracic vertebrae of T6-T11 in experimental group were fixed with unilateral multi-segment cross intervertebral space staple fxation and those in control group were exposed but not fxed. Intervertebral disc and growth plates were taken from T8-T9 4 months after operation and observed with H&E and Giemsa staining.ResultsNo scoliosis occurred in control group with no signifcant difference found in the height of growth plate, morphology of mastocytes in growth plate and chondrocytes in end plate. Mild scoliosis occurred with a Cobb angle of 17.9 °±5.6 ° in experimental group 4 months after operation. The height of growth plate over and below the intervertebral disc was significantly shorter in the compression side than in the noncompression side (1.27±0.34 mm vs 2.05±0.19 mm, 0.77±0.31 mm vs 2.1±0.29 mm). The number of mastocytes was smaller in the compression side than in the non-compression side with no signifcant difference between experimental group and control group. The morphology of mastocytes in growth plate was abnormal and the mastocytes in growth plate were irregularly arranged while the mastocytes in growth plate were regularly arranged and their morphology was normal with rich cytoplasm and intact nuclei in the compressed side of experimental group. The number, volume and cytoplasm of chondrocytes were smaller, the chondrocytes were less compactly arranged in end plate and the nuclei of chondrocytes were fatter in the compression side than in the non-compression side of experimental group.ConclusionUnilateral fxation of thoracic verterbrae and hemiepiphyseal compression inhibit the growth of growth plate and development of chondrocytes, thus leading to imbalanced development of spine at both sides.
staple; scoliosis; growth plate; histology
R 682.3
A
2095-5227(2014)01-0089-03
10.3969/j.issn.2095-5227.2014.01.028
時(shí)間:2013-11-15 16:44
http://www.cnki.net/kcms/detail/11.3275.R.20131115.1644.001.html
2013-08-01
張巍,男,博士,主治醫(yī)師。研究方向:骨科學(xué)。Email: bszw@hotmail.com
張永剛,男,博士,主任醫(yī)師,教授,博士生導(dǎo)師。Email: zhangyg301@hotmail. com
解放軍醫(yī)學(xué)院學(xué)報(bào)2014年1期