任艷飛 岳麗杰
·論著·
GSTP1 A313G多態(tài)性與兒童急性淋巴細(xì)胞白血病無關(guān)聯(lián)
——基于9篇病例對照研究的Meta分析
任艷飛 岳麗杰
目的 對GSTP1 A313G位點(diǎn)AG、GG、AG+GG基因型和G等位基因與兒童急性淋巴細(xì)胞白血病(ALL)關(guān)聯(lián)性進(jìn)行Meta分析。方法 檢索PubMed、EMBASE、OVID、中國生物醫(yī)學(xué)文獻(xiàn)數(shù)據(jù)庫、中國知網(wǎng)和萬方數(shù)據(jù)庫(2000年1月至2014年6月)中的文獻(xiàn),收集GSTP1 A313G多態(tài)性與兒童ALL關(guān)聯(lián)性的病例對照研究,應(yīng)用RevMan 5.3軟件和Stata 12.0軟件進(jìn)行Meta分析,統(tǒng)計(jì)合并OR值及其95%CI。結(jié)果 符合本文Meta分析納入標(biāo)準(zhǔn)的文獻(xiàn)有10篇,其中9篇文獻(xiàn)具同質(zhì)性(病例組1 476例,對照組1 905例)。Meta分析結(jié)果顯示,GSTP1 A313G位點(diǎn)AG、GG、AG+GG基因型與兒童ALL發(fā)病風(fēng)險(xiǎn)無關(guān)聯(lián)(AG基因型:OR=1.07,95%CI:0.93~1.24,P=0.35;GG基因型:OR=1.12,95%CI:0.86~1.45,P=0.41;AG+GG基因型:OR=1.08,95%CI:0.94~1.24,P=0.28),G等位基因與兒童ALL發(fā)病風(fēng)險(xiǎn)亦無關(guān)聯(lián)性(OR=1.11,95%CI:0.96~1.28,P=0.16)。按種族、對照組來源、基因分型方法和樣本量大小行分層分析,顯示GSTP1 A313G位點(diǎn)上述基因型和等位基因與兒童ALL發(fā)病無關(guān)聯(lián)。結(jié)論GSTP1 A313G位點(diǎn)多態(tài)性與兒童ALL發(fā)病風(fēng)險(xiǎn)無關(guān)聯(lián)。
谷胱甘肽轉(zhuǎn)移酶P1; 急性淋巴細(xì)胞白血病; 多態(tài)性; Meta分析; 兒童
急性淋巴細(xì)胞白血病(ALL)是兒童最常見的一類惡性腫瘤性疾病,具有一定的種族遺傳傾向。目前對ALL發(fā)病機(jī)制仍不十分清楚,有觀點(diǎn)認(rèn)為ALL發(fā)生危險(xiǎn)性可能與某些參與異源性物質(zhì)代謝的酶類有關(guān),如Ⅱ相代謝酶超家族中的谷胱甘肽轉(zhuǎn)移酶(GSTs)[1]。GSTs是一類復(fù)雜且分布廣泛的酶類超家族,可與內(nèi)源親水性底物如谷胱甘肽、鳥苷二磷酸葡糖醛酸及甘氨酸結(jié)合,而發(fā)揮解毒作用,是機(jī)體抵抗毒性物質(zhì)的關(guān)鍵。其中,編碼谷胱甘肽轉(zhuǎn)移酶P1(GSTP1)基因的A313G多態(tài)性位點(diǎn)(NCBI dbSNP:rs1695),在氨基酸水平上發(fā)生105位氨基酸置換(Ile105Val),進(jìn)而改變GSTP1催化活性[2]。目前已有研究表明,GSTP1 A313G多態(tài)性在腫瘤發(fā)生危險(xiǎn)性中發(fā)揮著關(guān)鍵作用[3]。然而,國內(nèi)外文獻(xiàn)中關(guān)于GSTP1 A313G多態(tài)性與兒童ALL關(guān)聯(lián)性的研究數(shù)據(jù)仍存在較大差異[4],這可能與各研究納入樣本量、種族以及多態(tài)性篩查手段不同有關(guān),目前尚缺乏發(fā)表文獻(xiàn)的匯總分析報(bào)道。因此,本研究將采用Meta分析方法評估GSTP1 A313G多態(tài)性與兒童ALL的關(guān)聯(lián)。
1.1 納入標(biāo)準(zhǔn) ①公開發(fā)表的GSTP1 A313G多態(tài)性與兒童ALL關(guān)系的文獻(xiàn);②研究設(shè)計(jì)為病例對照研究;③語種為中文或英文;④研究對象種族不限;⑤ALL組和對照組年齡≤18歲;⑥納入文獻(xiàn)中應(yīng)包括研究設(shè)計(jì)、樣本量、種族來源、GSTP1 A313G位點(diǎn)各基因型和等位基因頻率。
1.2 排除標(biāo)準(zhǔn) ①ALL組和對照組基因型分布分別行Hardy-Weinberg平衡檢驗(yàn),以驗(yàn)證研究人群具有群體代表性,對不符合該平衡的文獻(xiàn)予以剔除;②重復(fù)文獻(xiàn)予以剔除。
1.3 文獻(xiàn)檢索策略
1.3.1 數(shù)據(jù)庫 PubMed、EMBASE和OVID數(shù)據(jù)庫;中國生物醫(yī)學(xué)文獻(xiàn)數(shù)據(jù)庫、中國知網(wǎng)和萬方數(shù)據(jù)庫。文獻(xiàn)檢索起止時(shí)間為建庫至2014年6月30日。并回溯檢索到的相關(guān)綜述和Meta分析中的參考文獻(xiàn)。
1.3.2 檢索式 中文檢索式:谷胱甘肽轉(zhuǎn)移酶P1或GSTP1或GSTpi和基因多態(tài)性和急性淋巴細(xì)胞白血病或ALL和兒童或小兒;英文檢索式:(glutathione S-transferase P1 OR GSTP1 OR GSTpi) AND (genetic polymorphism) AND (acute lymphoblastic leukemia OR ALL) AND (children OR childhood)。
1.4 文獻(xiàn)篩選與資料提取 由任艷飛根據(jù)納入和排除標(biāo)準(zhǔn)進(jìn)行文獻(xiàn)篩選和提取數(shù)據(jù),包括作者、發(fā)表時(shí)間、國家、種族、樣本數(shù)、樣本來源、實(shí)驗(yàn)方法、ALL組和對照組中GSTP1 A313G位點(diǎn)各基因型(AA、AG、GG)和等位基因(G)的樣本例數(shù),并對納入文獻(xiàn)行Hardy-Weinberg平衡檢驗(yàn)。遇到不確定的問題與岳麗杰討論決定。
1.5 文獻(xiàn)質(zhì)量評價(jià) 由任艷飛參照NHI-NHGRI研究工作組2007年制定的遺傳關(guān)聯(lián)性研究報(bào)告規(guī)范[5]中的14條標(biāo)準(zhǔn)進(jìn)行質(zhì)量評價(jià)。每條標(biāo)準(zhǔn)以“是”(滿足標(biāo)準(zhǔn))、“否”(不滿足標(biāo)準(zhǔn))和“不清楚”(文獻(xiàn)未描述)進(jìn)行評價(jià)。如遇不確定的問題與岳麗杰討論決定。
1.6 統(tǒng)計(jì)學(xué)方法 對納入文獻(xiàn)中ALL組和對照組行χ2檢驗(yàn),P>0.05為符合Hardy-Weinberg平衡檢驗(yàn)。應(yīng)用RevMan 5.3軟件對各文獻(xiàn)進(jìn)行異質(zhì)性分析,統(tǒng)計(jì)學(xué)上無異質(zhì)性(P≥0.05),采用固定效應(yīng)模型合并分析;存在異質(zhì)性(P<0.05),則采用隨機(jī)效應(yīng)模型合并分析。I2=0為文獻(xiàn)間無異質(zhì)性,~25%為存在低度異質(zhì)性,I2~50%為中度異質(zhì)性,>50%為高度異質(zhì)性。采用分層分析法和對應(yīng)效應(yīng)模型替換方法進(jìn)行敏感性分析。分別對GSTP1 A313G位點(diǎn)AG、GG、AG+GG基因型和G等位基因與兒童ALL關(guān)聯(lián)進(jìn)行Meta分析,計(jì)算合并比值比(OR)及其95%CI,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。當(dāng)納入文獻(xiàn)數(shù)>20篇時(shí),行Begg's秩相關(guān)法和Egger's回歸法評估發(fā)表偏倚[6],當(dāng)納入文獻(xiàn)<20篇時(shí)行剪補(bǔ)法評估發(fā)表偏倚。采用Stata 12.0軟件進(jìn)行剪補(bǔ)法分析。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 文獻(xiàn)檢索結(jié)果 共檢索到相關(guān)文獻(xiàn)27篇(英文24篇,中文3篇)。文獻(xiàn)篩選流程如圖1所示,10篇文獻(xiàn)[7~16]進(jìn)入Meta分析(英文9篇,中文1篇)。表1顯示:10篇文獻(xiàn)均發(fā)表在2002至2011年;來自10個(gè)國家;7篇文獻(xiàn)以高加索人為對象,3篇以亞洲人為對象;對照組8篇以人群為基礎(chǔ),2篇以醫(yī)院為基礎(chǔ)?;蚍中头椒òㄏ拗菩云伍L度多態(tài)性聚合酶鏈?zhǔn)椒磻?yīng)(PCR-RFLP)、等位基因特異性聚合酶鏈?zhǔn)椒磻?yīng)(AS-PCR)、聚合酶鏈?zhǔn)椒磻?yīng)等位基因特異性寡核苷酸雜交法(PCR-ASO)、實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(RQ-PCR)。納入分析的10篇文獻(xiàn)中,ALL組1 556例,對照組1 990例;表2為10篇文獻(xiàn)GSTP1 A313G位點(diǎn)各基因型和等位基因分布情況,10篇文獻(xiàn)數(shù)據(jù)分布均符合Hardy-Weinberg平衡(P>0.05)。
圖1 文獻(xiàn)篩選流程圖
Fig 1 Flow chart of aricle screening and selection process
2.2 文獻(xiàn)質(zhì)量評價(jià) 圖2顯示,10篇納入文獻(xiàn)均未進(jìn)行把握度的計(jì)算、均未采用其他或相同方法重復(fù)基因型檢測、均未描述是否采用盲法進(jìn)行結(jié)果評價(jià)、均未進(jìn)行多重檢驗(yàn)校正和協(xié)變量調(diào)整、均未進(jìn)行重復(fù)性和功能驗(yàn)證性實(shí)驗(yàn);10篇納入文獻(xiàn)的ALL組和對照組均來自同一人群、均描述了ALL組人口學(xué)及臨床信息,均進(jìn)行了危險(xiǎn)因素分析 ;6篇文獻(xiàn)[7,10~12,14,16]進(jìn)行了連鎖不平衡分析;文獻(xiàn)[10,13]給出了多態(tài)性的鑒定序列;除文獻(xiàn)[1]外均進(jìn)行Hardy-Weinberg平衡檢驗(yàn);除文獻(xiàn)[15]外均進(jìn)行了人群分層分析。
表1 納入10篇文獻(xiàn)一般情況
Notes HWE: Hardy-Weinberg equilibrium
表2 GSTP1 A313G位點(diǎn)各基因型和等位基因頻數(shù)
圖2 納入10篇文獻(xiàn)的質(zhì)量評估結(jié)果
Fig 2 Quality of 10 included studies
Notes 1: power; 2: control characterization; 3: case characterization; 4: LD exploration; 5: polymorphism identification; 6: genotyping error check; 7: Hardy-Weinberg equilibrium; 8: blinding; 9: multiple testing; 10: covariate adjustment; 11: risks; 12: population stratification adjustment; 13: replication; 14: functional study
2.3 異質(zhì)性分析 對納入的10篇文獻(xiàn)GSTP1 A313G位點(diǎn)各基因型和等位基因分別進(jìn)行異質(zhì)性分析(表3),發(fā)現(xiàn)G等位基因表現(xiàn)出低異質(zhì)性(I2=19%),Galbraith圖(圖3)顯示文獻(xiàn)[9]不在回歸直線內(nèi)部,說明文獻(xiàn)[9]存在異質(zhì)性,剔除文獻(xiàn)[9]后再行異質(zhì)性分析,各基因型和等位基因I2=0,各文獻(xiàn)間異質(zhì)性消除,采用固定效應(yīng)模型進(jìn)行Meta分析。
表3 文獻(xiàn)間的異質(zhì)性分析
Tab 3 Hetergeneity analysis of included studies
Polymor-phismI2/%χ2dfPModelAllstudiesAG49.3780.40RandomGG04.4080.88RandomAG+GG39.2580.41RandomG1911.1680.26RandomRemovalofstudy[9]AG03.8980.87RandomGG02.2380.97RandomAG+GG02.8580.94RandomG02.7580.95Random
圖3 異質(zhì)性分析Galbraith圖
Fig 3Galbraith plot for hetergeneity analysis
Notes Red line represented fitted values
2.4GSTP1 A313G多態(tài)性與兒童ALL易感性 Meta分析結(jié)果顯示,AG基因型文獻(xiàn)合并OR=1.07(95%CI:0.93~1.24),P=0.35(圖4);GG基因型文獻(xiàn)合并OR=1.12(95%CI:0.86~1.45),P=0.41(圖5);AG+GG基因型文獻(xiàn)合并OR=1.08(95%CI:0.94~1.24),P=0.28(圖6);G等位基因文獻(xiàn)合并OR=1.11(95%CI:0.96~1.28),P=0.16(圖7);提示GSTP1 A313G位點(diǎn)AG、GG、AG+GG基因型和G等位基因與兒童ALL發(fā)病風(fēng)險(xiǎn)無關(guān)聯(lián)。
圖4 GSTP1 A313G位點(diǎn)AG基因型與兒童急性淋巴細(xì)胞白血病關(guān)聯(lián)性的Meta分析
圖5 GSTP1 A313G位點(diǎn)GG基因型與兒童ALL易感性的Meta分析
圖6 GSTP1 A313G位點(diǎn)AG+GG基因型與兒童急性淋巴細(xì)胞白血病關(guān)聯(lián)性的Meta分析
圖7GSTP1 A313G位點(diǎn)G等位基因與兒童急性淋巴細(xì)胞白血病關(guān)聯(lián)性的Meta分析
Fig 7 Meta-analysis of the relationship between G allele ofGSTP1 A313G and the susceptibility to childhood ALL
2.5 敏感性分析 利用隨機(jī)效應(yīng)模型分別對9篇[7,8,10~16]GSTP1 A313G多態(tài)性AG、GG、AG+GG基因型和G等位基因與兒童ALL關(guān)聯(lián)性的文獻(xiàn)進(jìn)行合并分析,合并OR值(95%CI)分別為1.07(0.93~1.24)、1.12(0.86~1.45)、1.08(0.94~1.24)和1.11(0.96~1.28),P均>0.05,與固定效應(yīng)模型結(jié)果一致,研究結(jié)果可靠。
兒童GSTP1 多態(tài)性差異性分布受多方面因素影響,為防止過低評價(jià)GSTP1 A313G多態(tài)性與兒童ALL的關(guān)聯(lián)性,本文按種族、對照組來源、基因分型方法和樣本量大小對各文獻(xiàn)進(jìn)行亞組分析,表4顯示,GSTP1 A313G位點(diǎn)各基因型和G等位基因在不同亞組中均與兒童ALL發(fā)病風(fēng)險(xiǎn)無關(guān)(P均>0.05)。
表4 GSTP1 A313G多態(tài)性與兒童急性淋巴細(xì)胞白血病關(guān)聯(lián)性的分層分析
2.6 發(fā)表偏倚評估 采用剪補(bǔ)法行發(fā)表偏倚評估,GSTP1 A313G位點(diǎn)AG、AG+GG基因型和G等位基因剪補(bǔ)前l(fā)ogOR值分別為0.07、0.08和0.10,95%CI均為0.08~0.22,剪補(bǔ)前后的logOR值和95%CI一致,無需補(bǔ)充研究數(shù)目,表明結(jié)果穩(wěn)定(表5,圖8A、C、D)。GSTP1 A313G位點(diǎn)GG基因型剪補(bǔ)前l(fā)ogOR值為0.11,95%CI為0.15~0.37,剪補(bǔ)后logOR值變?yōu)?.09,95%CI變?yōu)?.17~0.35,剪補(bǔ)前后95%CI均無統(tǒng)計(jì)學(xué)意義,提示結(jié)果穩(wěn)定;補(bǔ)充1個(gè)點(diǎn),消除發(fā)表偏倚的影響后漏斗圖中心位置左移(表5,圖8B)。
圖8GSTP1 A313G多態(tài)性與兒童急性淋巴細(xì)胞白血病關(guān)聯(lián)性發(fā)表偏倚的剪補(bǔ)法漏斗圖
Fig 8 Funnel plot for publication bias of the association betweenGSTP1 A313G polymorphism and the susceptibility to childhood ALL by trim and fill method
Notes A: publication bias of the relationship between 313AG genotype and childhood ALL; B: publication bias of the relationship between 313GG genotype and childhood ALL(square for the trim number); C: publication bias of the relationship between 313AG+GG genotype and childhood ALL; D: publication bias of the relationship between 313G allele and childhood ALL
表5GSTP1 A313G多態(tài)性與兒童急性淋巴細(xì)胞白血病關(guān)聯(lián)性發(fā)表偏倚(剪補(bǔ)法)
Tab 5 Publication bias of the association betweenGSTP1 A313G polymorphism and the susceptibility to childhood ALL (trim and fill method)
Perera等[17]的研究表明,兒童相對于成人體內(nèi)代謝途徑仍未成熟且多數(shù)細(xì)胞處于分裂和生長狀態(tài),使其極易受外界毒性物質(zhì)的影響而誘導(dǎo)突發(fā)各種腫瘤類疾病。其中最常見的一類惡性腫瘤性疾病即為ALL。目前研究發(fā)現(xiàn)[18],兒童ALL發(fā)病機(jī)制不僅受環(huán)境因素的影響而且遺傳因素也起著至關(guān)重要的作用,特別是體內(nèi)各類外源性物質(zhì)代謝酶的遺傳多態(tài)性在探究兒童ALL發(fā)病風(fēng)險(xiǎn)方面具有肯定意義。目前為止國內(nèi)外已有大量關(guān)于Ⅰ相解毒代謝酶(細(xì)胞色素氧化酶類、EPHX1、XRCC1、RFC1等)和Ⅱ相解毒代謝酶(GSTP1、GSTM、GSTT、GSTA等)基因多態(tài)性與兒童ALL發(fā)病風(fēng)險(xiǎn)相關(guān)性的研究報(bào)道[19, 20]。然而,單獨(dú)一項(xiàng)研究往往因樣本量太少或研究范圍局限等,很難得出一個(gè)明確或更具普遍意義的結(jié)論,因此,對同質(zhì)性好的研究采用Meta分析的方法可提高結(jié)論的可靠性。
納入的10篇關(guān)于GSTP1多態(tài)性與兒童ALL關(guān)聯(lián)性的病例對照研究中,剔除存在異質(zhì)性的1篇文獻(xiàn)[9],以遺傳關(guān)聯(lián)性研究報(bào)告規(guī)范中的14條標(biāo)準(zhǔn)進(jìn)行質(zhì)量評價(jià),表明9篇文獻(xiàn)質(zhì)量中等偏下。進(jìn)入分析的ALL組1 476例,對照組1 905例,且均采用較成熟的基因分型方法,表明本Meta分析結(jié)論較任意單個(gè)研究的結(jié)論更可靠。Meta分析常受到多種混雜因素的影響,如對照組群體來源、基因的種族差異性以及基因型檢測方法等。為消除混雜因素對統(tǒng)計(jì)結(jié)果的干擾,本研究將納入文獻(xiàn)按種族來源、對照組來源、基因分型和樣本量大小不同進(jìn)行亞組分類,結(jié)果顯示在不同亞組中GSTP1 A313G位點(diǎn)的各基因型和等位基因均與兒童ALL無明顯關(guān)聯(lián)性(P均>0.05),證實(shí)本研究結(jié)果可靠。除此之外,Meta分析中最重要的2個(gè)環(huán)節(jié)就是異質(zhì)性分析和發(fā)表偏倚評估。納入的10篇文獻(xiàn)中文獻(xiàn)[9]表現(xiàn)出明顯異質(zhì)性,這可能與某些不可控混雜因素和遺傳選擇性偏倚有關(guān)。另外,病例對照研究中樣本量的大小在預(yù)測基因型和腫瘤發(fā)病風(fēng)險(xiǎn)關(guān)系中也起著重要作用,當(dāng)研究樣本量過少可能會(huì)過高評估兩者間的相關(guān)性。
Meta分析結(jié)果顯示,GSTP1 A313G位點(diǎn)AG、GG、AG+GG基因型及G等位基因均與兒童ALL發(fā)病風(fēng)險(xiǎn)無關(guān),Vijayakrishnan[20]和Huang[21]等的Meta分析結(jié)果一致。晚近研究[22]發(fā)現(xiàn)異源性物質(zhì)代謝酶的基因多態(tài)性在兒童ALL發(fā)生危險(xiǎn)中存在性別調(diào)節(jié)效應(yīng),即不同性別兒童的代謝酶遺傳多態(tài)性對ALL易感性的影響不同,已報(bào)道過的異源性物質(zhì)代謝酶基因有NQO1、MTHFR、GSTM1和GSTT1等。然而,導(dǎo)致兒童ALL中男孩的發(fā)生概率高于女孩40%的原因仍不清楚,并且與之相關(guān)的研究報(bào)道也較少[23]。本研究僅文獻(xiàn)[10]對GSTP1 A313G多態(tài)性進(jìn)行了性別差異性研究,結(jié)果顯示GSTP1 A313G位點(diǎn)AG基因型可降低女孩ALL發(fā)病風(fēng)險(xiǎn)(OR=0.43,P=0.031),這可能與雌激素受體上調(diào)抗氧化應(yīng)激調(diào)節(jié)基因(包括GSTP1)有關(guān)[24]。
本研究的局限性:①納入文獻(xiàn)以高加索人種為主,僅2篇文獻(xiàn)為亞洲人群,缺乏來自于其他種族人群的報(bào)道,容易造成研究結(jié)果發(fā)表偏倚;②納入的文獻(xiàn)均為已發(fā)表文獻(xiàn),未檢索未發(fā)表文獻(xiàn),可能導(dǎo)致發(fā)表偏倚;③由于納入文獻(xiàn)僅有1篇報(bào)道了不同性別兒童GSTP1多態(tài)性對ALL的影響,故無法分析性別在GSTP1多態(tài)性與兒童ALL易感性中所起的作用。
本Meta分析結(jié)果提示GSTP1 A313G位點(diǎn)AG、GG、AG+GG基因型及G等位基因均與兒童ALL發(fā)病風(fēng)險(xiǎn)無關(guān)。
[1]Krajinovic M, Labuda D, Sinnett D. Childhood acute lymphoblastic leukemia: genetic determinants of susceptibility and disease outcome. Rev Environ Health, 2001, 16(4): 263-279
[2]Zimniak P, Nanduri B, Pikula S, et al. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem / FEBS, 1994, 224(3): 893-899
[3]Di Pietro G, Magno LA, Rios-Santos F. Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab & Toxicol, 2010, 6(2): 153-170
[4]Ye Z, Song H. Glutathione s-transferase polymorphisms (GSTM1, GSTP1 and GSTT1) and the risk of acute leukaemia: a systematic review and meta-analysis. Eur J Cancer, 2005, 41(7): 980-989
[5]Yang L(楊琳), Ding JJ, Zhou WH. Association between polymorphisms of UDP-glucuronosyltransferase 1A1 gene and hyperbilirubinemia in neonates: a meta-analysis. Chin J Evid Based Pediatr(中國循證兒科雜志), 2010, 5(5): 335-348
[6]Sterne JA, Egger M, Smith GD. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ, 2001, 323(7304): 101-105
[7]Krajinovic M, Labuda D, Sinnett D. Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics, 2002, 12(8): 655-658
[8]Balta G, Yuksek N, Ozyurek E, et al. Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol, 2003, 73(3): 154-160
[9]Yuan XJ(袁曉軍), Gu LJ, Pan HL, et al. Analysis on GST-Pi genetic polymorphism in children with acute leukemia. Natl Med J China(中華醫(yī)學(xué)雜志), 2003, 83(21): 27-30
[10]Barnette P, Scholl R, Blandford M, et al. High-throughput detection of glutathione s-transferase polymorphic alleles in a pediatric cancer population. Cancer Epidemiol Biomarkers Prev, 2004, 13(2): 304-313
[11]Canalle R, Burim RV, Tone LG, et al. Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen, 2004, 43(2): 100-109
[12]Clavel J, Bellec S, Rebouissou S, et al. Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev, 2005, 14(6): 531-540
[13]Gatedee J, Pakakassama S, Muangman S, et al. Glutathione S-transferase P1 genotypes, genetic susceptibility and outcome of therapy in thai childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev, 2007, 8(2): 294-296
[14]Pigullo S, Haupt R, Dufour C, et al. Are genotypes of glutathione S-transferase superfamily a risk factor for childhood acute lymphoblastic leukemia? Results of an Italian case-control study. Leukemia, 2007, 21(5): 1122-1124
[15]Suneetha KJ, Nancy KN, Rajalekshmy KR, et al. Role of GSTM1 (Present/Null) and GSTP1 (Ile105Val) polymorphisms in susceptibility to acute lymphoblastic leukemia among the South Indian population. Asian Pac J Cancer Prev, 2008, 9(4): 733-736
[16]Chan JY, Ugrasena DG, Lum DW, et al. Xenobiotic and folate pathway gene polymorphisms and risk of childhood acute lymphoblastic leukaemia in Javanese children. Hematol Oncol, 2011, 29(3): 116-123
[17]Perera FP. Environment and cancer: who are susceptible?. Science, 1997, 278(5340): 1068-1073
[18]Buffler PA, Kwan ML, Reynolds P, et al. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Can Invest, 2005, 23(1): 60-75
[19]Nousome D, Lupo PJ, Okcu MF, et al. Maternal and offspring xenobiotic metabolism haplotypes and the risk of childhood acute lymphoblastic leukemia. Leu Res, 2013, 37(5): 531-535
[20]Vijayakrishnan J, Houlston RS. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica, 2010, 95(8): 1405-1414
[21]Huang GZ, Shan W, Zeng L, et al. The GSTP1 A1578G polymorphism and the risk of childhood acute lymphoblastic leukemia: results from an updated meta-analysis. Genet Mol Res, 2013, 12(3): 2481-2491
[22]Yeoh AE, Lu Y, Chan JY, et al. Genetic susceptibility to childhood acute lymphoblastic leukemia shows protection in Malay boys: results from the Malaysia-Singapore ALL Study Group. Leu Res, 2010, 34(3): 276-283
[23]Cartwright RA, Gurney KA, Moorman AV. Sex ratios and the risks of haematological malignancies. Br J Haematol, 2002, 118(4): 1071-1077
[24]Montano MM, Deng H, Liu M, et al. Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications. Oncogene, 2004, 23(14): 2442-2453
(本文編輯:張崇凡)
No association between GSTP1 A313G polymorphisms and the susceptibility to childhood acute lymphoblastic leukemia: a meta-analysis based on 9 case-control studies
RENYan-fei,YUELi-jie
(InstituteofPediatricsResearch,ShenzhenChildren'sHospitalofZunyiMedicalCollege,Shenzhen518026,China)
YUE Li-jie,E-mail:2376028869@qq.com
ObjectiveTo assess the relationship between AG, GG and AG+GG genotype and G allele of glutathione S-transferase pi (GSTP1) A313G polymorphisms and childhood acute lymphoblastic leukemia (ALL).Methods PubMed, EMBASE, OVID, China Bio-Medicine Database, China National Knowledge Infrastructure and Wanfang Chinese Periodical Database were searched for the case-control study on the association ofGSTP1 A313G polymorphisms with ALL from January 2000 to June 2014. According to the inclusion criteria, related articles were evaluated. Poor-quality studies were excluded. RevMan 5.3 software and Stata 12.0 software were applied for investigating the meta-analysis and calculating the pooled odds ratio (OR) and 95% confidence interval (CI).ResultsNine eligible studies were included with 1 476 childhood ALL cases and 1 905 controls. Overall, the variant genotypes AG, GG, AG+GG and G allele ofGSTP1 A313G polymorphisms had no association with childhood ALL risk (AG genotype: OR=1.07, 95%CI:0.93-1.24,P=0.35; GG genotype: OR=1.12, 95%CI:0.86-1.45,P=0.41; AG+GG genotype: OR=1.08, 95%CI: 0.94-1.24,P=0.28; G allele: OR=1.11, 95%CI: 0.96-1.28,P=0.16). Similarly, no significant associations were detected in any subgroups of race, source of control group, gene analysis method and sample size.ConclusionThe results suggested there was no association betweenGSTP1 A313G polymorphisms and childhood ALL.
Glutathione S-transferase pi; Acute lymphoblastic leukemia; Polymorphism; Meta analysis; Childhood
國家自然科學(xué)基金資助項(xiàng)目:30471830;深圳市科技計(jì)劃重點(diǎn)項(xiàng)目:20110101
遵義醫(yī)學(xué)院附屬深圳市兒童醫(yī)院,兒科研究所 深圳,518026
岳麗杰,E-mail:2376028869@qq.com
10.3969/j.issn.1673-5501.2014.05.001
2014-07-03
2014-08-20)