李海龍,畢曉瑩
血管性認(rèn)知障礙(vascular cognitive impairment,VCI)是目前人群中僅次于阿爾茨海默?。ˋlzheimer's disease,AD)導(dǎo)致癡呆的第二位疾病,隨著腦血管疾病發(fā)病率的不斷升高以及動(dòng)脈粥樣硬化、高血壓、糖尿病等血管性危險(xiǎn)因素在人群中愈發(fā)普遍,血管性認(rèn)知障礙所導(dǎo)致的癡呆已成為影響患者生存質(zhì)量的重要疾病[1]。目前血管性認(rèn)知障礙的發(fā)病機(jī)制不明,缺血低灌注、血腦屏障破壞、神經(jīng)營(yíng)養(yǎng)解偶聯(lián)等最終導(dǎo)致的以少突膠質(zhì)細(xì)胞死亡和髓鞘蛋白丟失為特征的腦白質(zhì)脫髓鞘病變被認(rèn)為是其重要的病理生理過程[1-2]。病理學(xué)研究顯示,損傷腦白質(zhì)中的氧化應(yīng)激和炎癥反應(yīng)標(biāo)記物(如細(xì)胞因子和黏附分子)的水平與血管性認(rèn)知障礙相關(guān)[3-5]。與此同時(shí),損傷區(qū)域還出現(xiàn)了小膠質(zhì)細(xì)胞(microglia)的激活和反應(yīng)性的星形膠質(zhì)細(xì)胞(reactive astrocytes,RAs),且伴有外周血中上述標(biāo)記物的上升[6-9]。因此,血管性認(rèn)知障礙的炎癥假說認(rèn)為這種缺血缺血氧環(huán)境下的小膠質(zhì)細(xì)胞過度激活介導(dǎo)的炎癥反應(yīng)可破壞血腦屏障,并造成腦白質(zhì)的損傷(white matter lesions,WMLs),促進(jìn)血管性認(rèn)知障礙的發(fā)生發(fā)展。本文就缺氧誘導(dǎo)小膠質(zhì)細(xì)胞激活進(jìn)而介導(dǎo)非特異性炎癥反應(yīng)導(dǎo)致白質(zhì)脫髓鞘損傷的機(jī)制研究做一綜述。
小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中的固有免疫細(xì)胞,對(duì)病原體和組織損傷起首要的反應(yīng)。激活的小膠質(zhì)細(xì)胞可產(chǎn)生大量的有助于清除病原感染和壞死組織的促炎介質(zhì),包括細(xì)胞因子、趨化因子、活性氧簇(reactive oxygen species,ROS)和一氧化氮。然而長(zhǎng)期過度的小膠質(zhì)細(xì)胞激活可導(dǎo)致病理性炎癥觸發(fā)神經(jīng)毒性反應(yīng)進(jìn)而引起神經(jīng)退行性疾病或腫瘤形成[10-11]。同時(shí)這種過度活化狀態(tài)的小膠質(zhì)細(xì)胞也是腦內(nèi)腫瘤壞死因子(tumor necrosis factor,TNF)α、白細(xì)胞介素(interleukin,IL)-1β、IL-6等具有神經(jīng)毒性的促炎因子的主要來源[12]。因此,小膠質(zhì)細(xì)胞的過度激活是血管性認(rèn)知障礙中慢性持續(xù)炎癥反應(yīng)啟動(dòng)的關(guān)鍵環(huán)節(jié)。
在正常腦內(nèi),小膠質(zhì)細(xì)胞正常活化狀態(tài)的維持依賴于神經(jīng)元持續(xù)地表達(dá)一種CX3趨化因子配體1(CX3 chemokine ligand1,CX3CL1)作用于小膠質(zhì)細(xì)胞上的特有CX3趨化因子受體(CX3 chemokine receptors,CX3CR1)[13-14]。有研究在短暫大腦中動(dòng)脈阻斷(middle cerebral artery occlusion,MCAO)動(dòng)物模型中發(fā)現(xiàn),CX3CR1敲除的小鼠腦梗死區(qū)面積及血腦屏障破壞程度均輕于對(duì)照組,且IL-1β和TNF-α信使核糖核酸(messenger ribonucleic acid,mRNA)的表達(dá)均低于對(duì)照組[15]。這與Cardona[16]與Corona等[17]發(fā)現(xiàn)在給予細(xì)菌脂多糖(lipopolysaccharides,LPS)注射的CX3CR1敲除小鼠腦組織中IL-1β表達(dá)較未敲除的對(duì)照組明顯升高的結(jié)果并不一致。另一項(xiàng)研究發(fā)現(xiàn),在MCAO小鼠模型中,與對(duì)照組相比,CX3CR1缺失的小鼠除了梗死面積減少外,還展現(xiàn)出較少的神經(jīng)元凋亡和活性氧水平,同時(shí)小膠質(zhì)細(xì)胞更多表現(xiàn)為可替代激活狀態(tài)(M2型)且伴有TNF-α、IL-1β、IL-6表達(dá)的明顯下降[18]。因此,在缺血缺氧環(huán)境下,CX3CR1信號(hào)缺失可能通過促進(jìn)小膠質(zhì)細(xì)胞可替代激活狀態(tài)(M2型)表達(dá)來抑制小膠質(zhì)細(xì)胞經(jīng)典激活狀態(tài)(M1型)從而發(fā)揮神經(jīng)保護(hù)作用,這對(duì)減緩小膠質(zhì)細(xì)胞過度激活對(duì)神經(jīng)元或少突膠質(zhì)細(xì)胞造成的損害可能具有重要意義。
在血管性認(rèn)知障礙中,慢性腦缺血被認(rèn)為是導(dǎo)致WMLs的主要病因。一些研究報(bào)道,激活的小膠質(zhì)細(xì)胞在WMLs的病理生理過程中十分關(guān)鍵[19-20]。劉勇等在體外實(shí)驗(yàn)中的研究發(fā)現(xiàn),通過構(gòu)建針對(duì)CX3CR1的短發(fā)夾核糖核酸(short hairpin ribonucleic acid,shRNA)并轉(zhuǎn)導(dǎo)低氧條件下培養(yǎng)的小膠質(zhì)細(xì)胞,可使低氧誘導(dǎo)的小膠質(zhì)細(xì)胞增殖減緩,且細(xì)胞因子TNF-α和IL-1β表達(dá)下降,同時(shí)伴有絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)與蛋白激酶C(protein kinase C,PKC)總蛋白的表達(dá)下降,提示p38MAPK/PKC通路的激活可能參與了缺氧所介導(dǎo)的小膠質(zhì)細(xì)胞激活和炎癥因子釋放[21]。這與在體實(shí)驗(yàn)中,CX3CR1敲除的MCAO模型小鼠病變側(cè)腦內(nèi)上述炎性細(xì)胞因子的表達(dá)下降結(jié)果一致,但不同于LPS誘導(dǎo)小膠質(zhì)細(xì)胞激活模型中CX3CR1敲除后IL-1β表達(dá)升高。這提示CX3CR1信號(hào)缺失對(duì)機(jī)體在受外界刺激后炎癥因子水平的影響并不一致,這可能與小膠質(zhì)細(xì)胞激活的啟動(dòng)因素不同有關(guān),特別是在不同的病理?xiàng)l件下,CX3CL1-CX3CR1信號(hào)對(duì)小膠質(zhì)細(xì)胞的調(diào)節(jié)作用可能有所不同,但其作用機(jī)制目前仍不十分清楚。有學(xué)者猜測(cè),CX3CL1的膜結(jié)合形式是維持小膠質(zhì)細(xì)胞靜息狀態(tài)的主要分子,可抑制IL-1β和TNF-α的釋放,而可溶解形式CX3CL1與CX3CR1結(jié)合可激活小膠質(zhì)細(xì)胞釋放以IL-1β為主的炎性細(xì)胞因子[22]。
TOLL樣受體4(Toll-like receptor 4,TLR 4)主要表達(dá)于小膠質(zhì)細(xì)胞,可被多種內(nèi)源性或外源性因子所激活,通過進(jìn)一步激活下游的信號(hào)通路,參與小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥反應(yīng)[23]。目前的研究已發(fā)現(xiàn)TLR4依賴的小膠質(zhì)細(xì)胞激活參與了多種神經(jīng)免疫疾病及退行性疾病的慢性炎癥過程[24-25]。此外,近年來的研究發(fā)現(xiàn)TLR4所介導(dǎo)的炎癥反應(yīng)還參與了腦缺血性疾病的發(fā)生。Caso等[26-27]首次對(duì)TLR4在永久MCAO小鼠模型中的作用進(jìn)行了研究,結(jié)果發(fā)現(xiàn)TLR4敲除的小鼠在缺血?jiǎng)?chuàng)傷后IL-1β水平降低,同時(shí)伴有梗死區(qū)面積減小及反映血腦屏障破壞程度的基質(zhì)金屬蛋白酶(matrix metalloproteinase-9,MMP-9)表達(dá)減少。體外研究中同樣發(fā)現(xiàn),缺氧可使小膠質(zhì)細(xì)胞TLR4表達(dá)升高[28]。這說明TLR4信號(hào)參與了缺血性炎癥反應(yīng)及其造成的腦組織破壞。此外,有研究在脊髓缺血再灌注損傷的模型中發(fā)現(xiàn),TLR4敲除可減緩脊髓中小膠質(zhì)細(xì)胞的活化程度及炎癥因子的釋放[29]。在術(shù)后認(rèn)知障礙的研究中發(fā)現(xiàn),隨著TLR4和炎癥因子表達(dá)水平恢復(fù)正常,認(rèn)知功能隨之改善[30]。因此,缺血條件下TLR4高表達(dá)對(duì)小膠質(zhì)細(xì)胞的活化同樣具有一定的調(diào)節(jié)作用,且可能損害認(rèn)知功能,但尚缺乏慢性缺血低灌注狀態(tài)下的研究。
目前缺血缺氧導(dǎo)致小膠質(zhì)細(xì)胞TLR4高表達(dá)及其激活下游炎性信號(hào)通路的機(jī)制尚不十分清楚。其中缺血缺氧所介導(dǎo)的熱休克蛋白60(heat shock proteins,HSP60)和高遷移率蛋白-1(high-mobility group box 1,HMGB1)被認(rèn)為是缺血缺氧下與TLR4相結(jié)合而參與炎癥反應(yīng)的潛在內(nèi)源性配體[31-32]。TLR4所介導(dǎo)的信號(hào)主要通過髓樣分化因子88(myeloid differentiation factor 88,MyD88)和干擾素TIR結(jié)構(gòu)域銜接蛋白(Toll/interleukin-1receptor-domain-containing adaptorinducing interferon-β,TRIF)兩個(gè)通路進(jìn)行傳遞。體外研究發(fā)現(xiàn),在小膠質(zhì)細(xì)胞中,低氧可使LPS介導(dǎo)的干擾素調(diào)節(jié)因子3(interferon regulatory factor-3,IRF-3)的激活及隨后β干擾素的表達(dá)增強(qiáng),但同時(shí)抑制LPS通過MyD88通路激活核轉(zhuǎn)錄因子kappa B(nucleartranscriptionfactor kappa B,NF-κB)[28]。提示低氧對(duì)TLR4下游的信號(hào)通路調(diào)節(jié)可能與其他刺激有所不同。而在缺血預(yù)適應(yīng)對(duì)腦缺血性損傷的保護(hù)機(jī)制研究中發(fā)現(xiàn),大鼠經(jīng)短暫的缺血預(yù)適應(yīng)后,TRIF/IRF-3表達(dá)水平升高,盡管NF-κB的表達(dá)同時(shí)升高,但其在細(xì)胞質(zhì)中始終維持著一種不活躍狀態(tài)[33]。因此,在缺血缺氧條件下TLR4下游信號(hào)通路的表達(dá)變化可能是小膠質(zhì)細(xì)胞所介導(dǎo)的炎癥反應(yīng)強(qiáng)弱的關(guān)鍵,其中TRIF信號(hào)通路對(duì)炎癥介導(dǎo)的缺血性損傷具有一定的保護(hù)作用。鑒于在血管性認(rèn)知障礙中炎癥因子水平與認(rèn)知損害密切相關(guān),通過調(diào)節(jié)TLR4下游信號(hào)的表達(dá)可能在抑制血管性認(rèn)知障礙發(fā)生發(fā)展中具有重要作用。
近些年來的研究發(fā)現(xiàn),由靜息狀態(tài)激活后的小膠質(zhì)細(xì)胞可表現(xiàn)為兩種不同活化狀態(tài):經(jīng)典激活狀態(tài)(M1型)和選擇性激活狀態(tài)(M2型)。M2型小膠質(zhì)細(xì)胞通過產(chǎn)生抗炎細(xì)胞因子及神經(jīng)營(yíng)養(yǎng)因子發(fā)揮神經(jīng)保護(hù)作用促進(jìn)內(nèi)穩(wěn)態(tài)的恢復(fù),而在外界損傷刺激下,小膠質(zhì)細(xì)胞激活常表現(xiàn)為M1型進(jìn)而釋放大量的炎性細(xì)胞因子及ROS,而過度釋放的TNF-α還可作用于小膠質(zhì)細(xì)胞上的TNF-R1促使其持續(xù)激活介導(dǎo)慢性炎癥的發(fā)生[34]。臨床研究發(fā)現(xiàn),伴有小膠質(zhì)細(xì)胞活化標(biāo)記物YKL-40和sCD14持續(xù)升高的輕度認(rèn)知損害患者更易發(fā)展為血管性癡呆(vascular dementia,VaD)[35]。因而小膠質(zhì)細(xì)胞的持續(xù)活化是促進(jìn)血管性認(rèn)知障礙發(fā)生發(fā)展的重要因素。
以少突膠質(zhì)細(xì)胞死亡為主的髓鞘脫失及再生障礙是血管性認(rèn)知障礙進(jìn)行性發(fā)展的重要病理學(xué)特征。在腦血管疾病及多種血管性危險(xiǎn)因素造成的缺血缺氧條件下,小膠質(zhì)細(xì)胞可被激活為M1狀態(tài),進(jìn)而釋放大量炎癥因子對(duì)少突膠質(zhì)細(xì)胞及神經(jīng)元的軸突造成損害。過度釋放的TNF-α和IL-1β作為主要炎癥因子可進(jìn)一步作用于神經(jīng)元或少突膠質(zhì)細(xì)胞上的相應(yīng)受體產(chǎn)生炎性損傷作用。TNF-α激活其受體TNF-R1可通過半胱天冬酶信號(hào)通路誘導(dǎo)細(xì)胞凋亡[36]。在初生小鼠中,當(dāng)暴露于低氧環(huán)境時(shí),腦室周圍白質(zhì)少突膠質(zhì)細(xì)胞上的TNF-R1表達(dá)增多,TNF-α可與之結(jié)合加強(qiáng)其介導(dǎo)少突膠質(zhì)細(xì)胞的凋亡[19]。體外研究還發(fā)現(xiàn),來自TNF-R1/TNFR2敲除的小鼠中獲得的少突膠質(zhì)細(xì)胞祖細(xì)胞能夠抵抗由LPS介導(dǎo)的小膠質(zhì)細(xì)胞毒性作用[37]。IL-1R1在低氧時(shí)也有表達(dá)升高,IL-1β與之結(jié)合后盡管并不引起細(xì)胞凋亡,但過度表達(dá)的IL-1β可通過與神經(jīng)干細(xì)胞上的IL-1R1結(jié)合激活NF-κB信號(hào)可抑制海馬的神經(jīng)再生循環(huán),甚至導(dǎo)致動(dòng)物的抑郁行為[38]。因此,低氧條件下TNF-R1在少突膠質(zhì)細(xì)胞上的過度表達(dá)從而介導(dǎo)TNF-α所引起的少突膠質(zhì)細(xì)胞凋亡以及IL-1β作用于神經(jīng)干細(xì)胞所導(dǎo)致的神經(jīng)再生障礙可能是血管性認(rèn)知障礙WMLs發(fā)生的重要機(jī)制。與M1型小膠質(zhì)細(xì)胞不同的是,M2型小膠質(zhì)細(xì)胞對(duì)腦白質(zhì)脫髓鞘損傷中少突膠質(zhì)細(xì)胞的分化具有驅(qū)動(dòng)作用,且為髓鞘再生所必需,其釋放的活化素A(activin-A)促進(jìn)少突膠質(zhì)細(xì)胞前體細(xì)胞(oligodendrocyte precursor cells,OPCs)向少突膠質(zhì)細(xì)胞的分化[39]。由此可見,適當(dāng)?shù)卣{(diào)節(jié)小膠質(zhì)細(xì)胞的活化狀態(tài)可能有助于減少缺血缺氧條件下的少突膠質(zhì)細(xì)胞損傷并促進(jìn)髓鞘再生修復(fù)。
近些年的研究發(fā)現(xiàn),慢性缺血缺氧所導(dǎo)致的腦白質(zhì)損傷主要是由于OPCs的成熟終止以致不能夠正常分化為少突膠質(zhì)細(xì)胞進(jìn)而形成髓鞘,且可能是血管性癡呆中腦白質(zhì)脫髓鞘損傷后髓鞘再生障礙的重要原因[40-41]。腦內(nèi)多種細(xì)胞源性的神經(jīng)營(yíng)養(yǎng)因子對(duì)OPCs向少突膠質(zhì)細(xì)胞的分化成熟修復(fù)髓鞘具有促進(jìn)作用[42-44]。因此,在缺血缺氧微環(huán)境下,改善低水平的神經(jīng)營(yíng)養(yǎng)因子表達(dá)可能有助于修復(fù)血管性認(rèn)知障礙損傷的白質(zhì)。
腦內(nèi)神經(jīng)營(yíng)養(yǎng)因子種類和來源十分復(fù)雜,其中神經(jīng)膠質(zhì)細(xì)胞是其主要來源,其神經(jīng)保護(hù)及修復(fù)髓鞘的作用與抑制炎癥因子的促凋亡作用密切相關(guān)。Wang Y等[45]在缺血缺氧腦損傷模型中發(fā)現(xiàn),神經(jīng)生長(zhǎng)因子(nerve growth factor,NGF)和腦源性神經(jīng)生長(zhǎng)因子(brainderived neurotrophic factor,BDNF)表達(dá)水平顯著降低,同時(shí)伴TNF-α和IL-1β的表達(dá)增高。這提示小膠質(zhì)細(xì)胞激活釋放的炎性細(xì)胞因子與神經(jīng)營(yíng)養(yǎng)因子對(duì)缺血性損傷起相反的調(diào)節(jié)作用。大量釋放的TNF-α可與少突膠質(zhì)細(xì)胞及OPCs上的TNFR1結(jié)合造成細(xì)胞損傷,而與TNFR2結(jié)合則具有神經(jīng)保護(hù)作用。體外研究發(fā)現(xiàn),TNF-α作用于TNFR2后可激活磷脂酰肌醇3激酶-蛋白激酶B/Akt通路介導(dǎo)星形膠質(zhì)細(xì)胞源性的白血病抑制因子(leukemia inhibitory factor,LIF)產(chǎn)生,從而促進(jìn)共培養(yǎng)的OPCs分化為髓鞘堿性蛋白表達(dá)陽性的成熟少突膠質(zhì)細(xì)胞[42]。與TNFR2作用相似的是,胰島素樣生長(zhǎng)因子1(insulin-like growth factor-1,IGF-1)也可通過激活磷脂酰肌醇3激酶-蛋白激酶B/Akt通路進(jìn)而阻斷TNF-α誘導(dǎo)的線粒體凋亡來保護(hù)OPCs從而促進(jìn)其分化[46]。此外,盡管小膠質(zhì)細(xì)胞被認(rèn)為是導(dǎo)致缺血后腦組織炎性損傷的主要細(xì)胞,但在短暫腦缺血后恢復(fù)靜息狀態(tài)小膠質(zhì)細(xì)胞可通過釋放IGF-1發(fā)揮神經(jīng)保護(hù)作用[47]。IL-1β敲除的小鼠可伴有小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞生成IGF-1減少以至其腦內(nèi)急性脫髓鞘損傷后少突膠質(zhì)細(xì)胞成熟障礙[48]。因此,在缺血后炎癥反應(yīng)中,炎癥因子除了對(duì)組織造成損害外,還具有一定介導(dǎo)神經(jīng)營(yíng)養(yǎng)因子表達(dá)促進(jìn)OPCs及少突膠質(zhì)細(xì)胞分化成熟的作用,同時(shí)神經(jīng)營(yíng)養(yǎng)因子對(duì)抗炎癥因子所誘導(dǎo)的凋亡具有神經(jīng)保護(hù)作用,這一系列相互的調(diào)節(jié)作用在促進(jìn)神經(jīng)元再生及髓鞘修復(fù)中有望成為有效的治療策略。
近年來,炎性機(jī)制在癡呆的發(fā)病機(jī)制中的作用越來越受到重視。與AD病理中Aβ沉積誘導(dǎo)的慢性炎癥致神經(jīng)元變性不同的是,在血管性認(rèn)知障礙中,其慢性炎癥反應(yīng)常由多種血管性危險(xiǎn)因素導(dǎo)致的缺血缺氧所引起,且病理改變多以腦室旁深部白質(zhì)病變?yōu)樘卣鳌P∧z質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)中起免疫監(jiān)視的主要細(xì)胞,其在慢性缺血缺氧條件下的持續(xù)激活必然是血管性認(rèn)知障礙發(fā)生發(fā)展的關(guān)鍵環(huán)節(jié)。小膠質(zhì)細(xì)胞激活所釋放的多種細(xì)胞因子能夠通過與相應(yīng)受體結(jié)合從而產(chǎn)生多種形式的生物學(xué)效應(yīng),參與少突膠質(zhì)細(xì)胞的凋亡及髓鞘的脫失。這一病理生理過程的調(diào)控十分復(fù)雜,本文僅對(duì)小膠質(zhì)細(xì)胞激活介導(dǎo)的炎癥反應(yīng)及其在血管性認(rèn)知障礙少突膠質(zhì)細(xì)胞損傷及修復(fù)中的作用進(jìn)行了綜述,在缺血性炎性損傷方面為未來有關(guān)血管性認(rèn)知障礙的基礎(chǔ)和臨床研究提供了參考。缺血缺氧對(duì)小膠質(zhì)細(xì)胞激活的調(diào)節(jié)機(jī)制、小膠質(zhì)細(xì)胞不同活化狀態(tài)相互轉(zhuǎn)化的機(jī)制以及OPCs分化成熟障礙的機(jī)制等值得更深入的研究。此外,小膠質(zhì)細(xì)胞激活介導(dǎo)的氧化應(yīng)激反應(yīng)等非炎性因素在血管性認(rèn)知障礙中的作用也值得進(jìn)一步研究。
1 Iadecola C. The pathobiology of vascular dementia[J].Neuron, 2013, 80:844-866.
2 Brickman AM, Siedlecki KL, Muraskin J, et al. White matter hyperintensities and cognition:testing the reserve hypothesis[J]. Neurobiol Aging, 2011, 32:1588-1598.
3 Candelario-Jalil E, Thompson J, Taheri S, et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment[J]. Stroke, 2011, 42:1345-1350.
4 Back SA, Kroenke CD, Sherman LS, et al. White matter lesions defined by diffusion tensor imaging in older adults[J]. Ann Neurol, 2011, 70:465-476.
5 Fernando MS, Simpson JE, Matthews F, et al.White matter lesions in an unselected cohort of the elderly:molecular pathology suggests origin from chronic hypoperfusion injury[J]. Stroke, 2006,37:1391-1398.
6 Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly:astrocytic, microglial and oligodendrocyte precursor cell responses[J]. Neuropathol Appl Neurobiol, 2007, 33:410-419.
7 Bai Z, Stamova B, Xu H, et al. Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities[J]. Alzheimer Dis Assoc Disord,2014, 28:226-233.
8 Rouhl RP, Damoiseaux JG, Lodder J, et al. Vascular inflammation in cerebral small vessel disease[J].Neurobiol Aging, 2012, 33:1800-1806.
9 Gallacher J, Bayer A, Lowe G, et al. Is sticky blood bad for the brain?:Hemostatic and inflammatory systems and dementia in the Caerphilly Prospective Study[J]. Arterioscler Thromb Vasc Biol, 2010,30:599-604.
10 Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease[J]. Nat Rev Neurol, 2010,6:193-201.
11 Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration[J].Cell, 2010, 140:918-934.
12 Block ML, Zecca L, Hong JS. Microgliamediated neurotoxicity:uncovering the molecular mechanisms[J]. Nat Rev Neurosci, 2007, 8:57-69.
13 Hanisch UK, Kettenmann H. Microglia:active sensor and versatile effector cells in the normal and pathologic brain[J]. Nat Neurosci, 2007, 10:1387-1394.
14 Biber K, Neumann H, Inoue K, et al. Neuronal'On' and 'Off' signals control microglia[J]. Trends Neurosci, 2007, 30:596-602.
15 Denes A, Ferenczi S, Halasz J, et al. Role of CX3CR1(fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse[J]. J Cereb Blood Flow Metab, 2008, 28:1707-1721.
16 Cardona AE, Pioro EP, Sasse ME, et al. Control of microglial neurotoxicity by the fractalkine receptor[J].Nat Neurosci, 2006, 9:917-924.
17 Corona AW, Huang Y, O'Connor JC, et al. Fractalkine receptor(CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide[J].J Neuroinflammation, 2010, 7:93.
18 Tang Z, Gan Y, Liu Q, et al. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke[J]. J Neuroinflammation, 2014, 11:26.
19 Deng Y, Lu J, Sivakumar V, et al. Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats[J]. Brain Pathol,2008, 18:387-400.
20 Boer K, Troost D, Jansen F, et al. Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex[J]. Neuropathology,2008, 28:577-590.
21 Liu Y, Zhao T, Yang Z, et al. CX3CR1 RNAi inhibits hypoxia-induced microglia activation via p38MAPK/PKC pathway[J]. Int J Exp Pathol, 2014, 95:153-157.22 Wolf Y, Yona S, Kim KW, et al. Microglia, seen from the CX3CR1 angle[J]. Front Cell Neurosci, 2013, 7:26.23 Okun E, Griffioen KJ, Lathia JD, et al. Toll-like receptors in neurodegeneration[J]. Brain Res Rev,2009, 59:278-292.
24 Song M, Jin J, Lim JE, et al. TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease[J]. J Neuroinflammation, 2011,8:92.
25 Howell OW, Rundle JL, Garg A, et al. Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis[J]. J Neuropathol Exp Neurol, 2010, 69:1017-1033.
26 Caso JR, Pradillo JM, Hurtado O, et al. Tolllike receptor 4 is involved in subacute stressinduced neuroinflammation and in the worsening of experimental stroke[J]. Stroke, 2008, 39:1314-1320.27 Caso JR, Pradillo JM, Hurtado O, et al. Tolllike receptor 4 is involved in brain damage and inflammation after experimental stroke[J]. Circulation,2007, 115:1599-1608.
28 Ock J, Jeong J, Choi WS, et al. Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia[J]. J Neurosci Res, 2007, 85:1989-1995.
29 Bell MT, Puskas F, Agoston VA, et al. Tolllike receptor 4-dependent microglial activation mediates spinal cord ischemia-reperfusion injury[J].Circulation, 2013, 128(11 Suppl 1):S152-156.
30 Wang Y, He H, Li D, et al. The role of the TLR4 signaling pathway in cognitive deficits following surgery in aged rats[J]. Mol Med Rep, 2013, 7:1137-1142.
31 Brea D, Blanco M, Ramos-Cabrer P, et al. Toll-like receptors 2 and 4 in ischemic stroke:outcome and therapeutic values[J]. J Cereb Blood Flow Metab,2011, 31:1424-1431.
32 Qiu J, Xu J, Zheng Y, et al. High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia[J]. Stroke,2010, 41:2077-2082.
33 Li H, Jin M, Lv T, et al. Mechanism of focal cerebral ischemic tolerance in rats with ischemic preconditioning involves MyD88- and TRIF-dependent pathways[J]. Exp Ther Med, 2013, 6:1375-1379.
34 Kuno R, Wang J, Kawanokuchi J, et al. Autocrine activation of microglia by tumor necrosis factoralpha[J]. J Neuroimmunol, 2005, 162:89-96.
35 Olsson B, Hertze J, Lautner R, et al. Microglial markers are elevated in the prodromal phase of Alzheimer's disease and vascular dementia[J]. J Alzheimers Dis, 2013, 33:45-53.
36 Nakazawa T, Nakazawa C, Matsubara A, et al. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma[J]. J Neurosci, 2006, 26:12633-12641.
37 Li J, Ramenaden ER, Peng J, et al. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present[J]. J Neurosci, 2008,28:5321-5330.
38 Koo JW, Russo SJ, Ferguson D, et al. Nuclear factorkappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior[J]. Proc Natl Acad Sci USA, 2010, 107:2669-2674.
39 Miron VE, Boyd A, Zhao JW, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination[J]. Nat Neurosci, 2013,16:1211-1218.
40 Segovia KN, McClure M, Moravec M, et al. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury[J]. Ann Neurol, 2008,63:520-530.
41 Miyamoto N, Maki T, Pham LD, et al. Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice[J]. Stroke,2013, 44:3516-3521.
42 Fischer R, Wajant H, Kontermann R, et al.Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor[J]. Glia, 2014, 62:272-283.
43 VonDran MW, Singh H, Honeywell JZ, et al. Levels of BDNF impact oligodendrocyte lineage cells following a cuprizone lesion[J]. J Neurosci, 2011, 31:14182-14190.
44 Cui QL, Fragoso G, Miron VE, et al. Response of human oligodendrocyte progenitors to growth factors and axon signals[J]. J Neuropathol Exp Neurol, 2010,69:930-944.
45 Wang Y, Cao M, Liu A, et al. Changes of inflammatory cytokines and neurotrophins emphasized their roles in hypoxic-ischemic brain damage[J]. Int J Neurosci,2013, 123:191-195.
46 Pang Y, Zheng B, Fan LW, et al. IGF-1 protects oligodendrocyte progenitors against TNFalphainduced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway[J].Glia, 2007, 55:1099-1107.
47 Lalancette-Hebert M, Gowing G, Simard A, et al.Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain[J]. J Neurosci,2007, 27:2596-2605.
48 Mason JL, Suzuki K, Chaplin DD, et al. Interleukin-1beta promotes repair of the CNS[J]. J Neurosci, 2001,21:7046-7052.
【點(diǎn)睛】
小膠質(zhì)細(xì)胞在腦缺血損傷后的極化(M1型與M2型)對(duì)腦白質(zhì)髓鞘損傷及修復(fù)具有不同作用和機(jī)制。本文對(duì)小膠質(zhì)細(xì)胞與血管性認(rèn)知障礙白質(zhì)損傷的關(guān)系進(jìn)行了綜述,為進(jìn)一步尋找血管性認(rèn)知障礙的治療靶點(diǎn)提供參考。