陳方軍 劉玉蘭 張育軍 孫國(guó)平
(安慶醫(yī)藥高等??茖W(xué)校臨床醫(yī)學(xué)系,安徽 安慶 246052)
結(jié)腸癌干細(xì)胞特征及生物學(xué)行為研究進(jìn)展
陳方軍劉玉蘭1張育軍1孫國(guó)平2
(安慶醫(yī)藥高等??茖W(xué)校臨床醫(yī)學(xué)系,安徽安慶246052)
〔關(guān)鍵詞〕結(jié)腸癌;干細(xì)胞;增殖;轉(zhuǎn)移
由于結(jié)腸癌早期缺乏癥狀難以診斷,發(fā)現(xiàn)時(shí)多已進(jìn)入晚期,預(yù)后差、存活率低。結(jié)腸癌組織中存在一小部分具有誘導(dǎo)腫瘤發(fā)生、增殖,促進(jìn)腫瘤遷徙、轉(zhuǎn)移的特殊細(xì)胞,稱為結(jié)腸癌干細(xì)胞(CCSCs),研究CCSCs的相關(guān)生物學(xué)特征,可以為結(jié)腸癌的診斷、治療、預(yù)防提供一種全新的手段。
1CCSCs的特征
腫瘤干細(xì)胞目前已被認(rèn)為是腫瘤發(fā)生、發(fā)展、轉(zhuǎn)移和藥物抵抗的重要原因,了解CCSCs的特性有助于分離CCSCs并研究其與腫瘤相關(guān)的生物學(xué)行為。
1.1CCSCs與非CCSCs之間的轉(zhuǎn)化細(xì)胞類型的可塑性在特定條件下可引起腫瘤干細(xì)胞和非干細(xì)胞之間的相互轉(zhuǎn)化。Schwitalla等〔1〕發(fā)現(xiàn)在炎性腫瘤微環(huán)境中,核因子(NF)-κB通過(guò)活化的Wnt信號(hào)通路,誘導(dǎo)非干細(xì)胞去分化,從而使組織獲得腫瘤發(fā)生的能力,而特定的腸上皮細(xì)胞RelA/p65(NF-κB亞單位)的消除可阻斷腸腺窩干細(xì)胞的擴(kuò)增,這說(shuō)明體內(nèi)炎癥信號(hào)對(duì)CCSCs的產(chǎn)生和去分化的作用。Yang等〔2〕也發(fā)現(xiàn)CCSCs和非CCSCs在正常和輻射環(huán)境中存在固有的相互轉(zhuǎn)換和動(dòng)態(tài)平衡,轉(zhuǎn)化生長(zhǎng)因子(TGF)-β可能通過(guò)激活上皮間充質(zhì)轉(zhuǎn)化在平衡中扮演重要角色。
1.2CCSCs的標(biāo)志物有研究通過(guò)蛋白質(zhì)組分析結(jié)腸癌細(xì)胞株SW1116中有包括CD133和CD29在內(nèi)的10個(gè)蛋白斑點(diǎn)被識(shí)別〔3,4〕,在細(xì)胞株HCT116 和SW480上有CD24表達(dá)〔5〕,DLD-1細(xì)胞株上表達(dá)CD133、 CD166、 G蛋白耦聯(lián)受體(LGR)5和乙醛脫氫酶(ALDH)〔6〕。具有這些標(biāo)志物的細(xì)胞群具有干細(xì)胞特性,在體外和體內(nèi)表現(xiàn)出更強(qiáng)的腫瘤生成、遷移、侵襲及化學(xué)抵抗能力。研究發(fā)現(xiàn),LGR5抗體在正常組織中不被染色,在高分化腫瘤的癌細(xì)胞中有單個(gè)或多達(dá)4個(gè)干細(xì)胞簇被染色,在低分化腫瘤中有9~81個(gè)干細(xì)胞簇被染色〔7〕;在伊立替康存在的環(huán)境下,LGR5的表達(dá)改變可引起CCSCs在增殖和抗藥狀態(tài)下發(fā)生相互轉(zhuǎn)化。這些結(jié)果顯示不同群集的干細(xì)胞數(shù)量和標(biāo)志物的表達(dá)改變可導(dǎo)致腫瘤等級(jí)的重構(gòu)〔8〕。細(xì)胞凋亡相關(guān)核蛋白PHLDA1在結(jié)腸癌中表達(dá)也很廣泛,在腫瘤侵襲的邊緣常有增強(qiáng)表達(dá)和核定位。小干擾RNA(siRNA)介導(dǎo)的PHLDA1抑制可阻止結(jié)腸癌細(xì)胞體外遷移、錨定非依賴性生長(zhǎng)及體內(nèi)腫瘤的生成,提示PHLDA1也可能是人腸組織潛在的上皮干細(xì)胞標(biāo)志物〔9〕。
2CCSCs的增殖、分化和轉(zhuǎn)移
2.1CCSCs的增殖對(duì)結(jié)腸癌ALDH+CCSCs細(xì)胞群研究發(fā)現(xiàn),胰島素樣生長(zhǎng)因子(IGF)-1在β-連環(huán)蛋白(catenin)依賴的方式下可使絲/蘇氨酸激酶(AKT)組成性激活突變體過(guò)表達(dá)導(dǎo)致干細(xì)胞數(shù)量增多,而IGF-1抗體Cp-751,871可減少干細(xì)胞數(shù)量,抑制腫瘤生長(zhǎng)〔10〕;此外,Lin等〔11〕發(fā)現(xiàn)ALDH+/CD133+CCSCs表達(dá)高水平的磷酸化信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化因子(STAT)3,姜黃素及類似物GO-Y030可抑制這種改變,減少STAT3下游靶基因表達(dá),從而誘導(dǎo)CCSCs凋亡,抑制腫瘤形成。另有研究顯示白細(xì)胞介素(IL)-6可通過(guò)誘導(dǎo)細(xì)胞株HCT-116和HT-29CCSCs Notch-1和CD44的表達(dá),增強(qiáng)這兩種細(xì)胞株的腫瘤生成能力〔12〕;干擾素(IFN)-γ和腫瘤細(xì)胞壞死因子(TNF)-α也可刺激C26結(jié)腸癌小鼠CCSCs加速腫瘤的生長(zhǎng),通過(guò)siRNA抑制CCSCs中的低氧誘導(dǎo)因子(HIF)-1α信號(hào)通路則能有效降低CCSCs在體內(nèi)炎性環(huán)境中的致瘤能力〔13〕。Leng等〔6〕則發(fā)現(xiàn)DLD-1細(xì)胞株中過(guò)度表達(dá)的kruppel樣轉(zhuǎn)錄因子(KLF)4,能誘導(dǎo)體細(xì)胞產(chǎn)生多能干細(xì)胞,促進(jìn)體內(nèi)外的腫瘤生成。
Yap多肽的高水平是促使CCSCs增殖的必需因素,Zhou等〔14〕研究顯示71例結(jié)腸癌病例中有68例高表達(dá)Yap,36個(gè)結(jié)腸癌細(xì)胞株中至少有30個(gè)高表達(dá)Yap,這可引起腸組織干細(xì)胞群擴(kuò)大,促使癌細(xì)胞增殖,而Yap的消除可減弱β-catenin和Notch信號(hào)傳導(dǎo),抑制細(xì)胞增殖和生存,在 HCT116細(xì)胞株中,同樣發(fā)現(xiàn)表皮生長(zhǎng)因子(EGF)對(duì)維持干細(xì)胞增殖是必需的,通過(guò)抑制EGF受體(EGFR)的自身磷酸化和下游信號(hào)通路蛋白AKT、細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)1/2能抑制CCSCs增殖,誘導(dǎo)CCSCs的凋亡〔15〕。Shenoy等〔16〕通過(guò)Wnt通路報(bào)告實(shí)驗(yàn)分離了潰瘍性結(jié)腸炎(UC)病人具有高度Wnt活性的ALDH+CCSCs,研究評(píng)估了Wnt/β-catenin信號(hào)通路與結(jié)腸炎向癌轉(zhuǎn)化(CCT)之間的機(jī)制,發(fā)現(xiàn)20個(gè)CCSCs單細(xì)胞注射后,有5個(gè)可引起組織腫瘤形成,顯示CCSCs具有高度的克隆和致瘤潛能。Múnera等〔17〕發(fā)現(xiàn)初生小鼠結(jié)腸上皮細(xì)胞中Est2基因的條件性失活可使小鼠結(jié)腸隱窩過(guò)度表達(dá),引起黏膜厚度增加、杯狀細(xì)胞數(shù)量增多,這種選擇性隱窩群分化狀態(tài)的改變提示Ets2缺陷改變了CCSCs的數(shù)量和行為,導(dǎo)致腫瘤的發(fā)生。
2.2CCSCs的分化DNA5′端甲基化是與組織分化相關(guān)的一種重要表觀修飾,5 mC在與TET蛋白家族成員相關(guān)的酶促反應(yīng)中被轉(zhuǎn)化成5hmC(5-hydroxymethylcytosine)。研究發(fā)現(xiàn)5hmC在鼠和人正常結(jié)腸組織中含量豐富,而在結(jié)腸癌組織中顯著減少,顯示5hmC在組織分化中的重要作用〔18〕。另有研究觀察了25例腫瘤樣本中表達(dá)CD133的CCSCs,發(fā)現(xiàn)骨形成蛋白(BMP)4激活包含磷脂酰肌醇-3-激酶(PI3K)和蛋白激酶B(PKB)/AKT的BMP信號(hào)通路,促進(jìn)了CCSCs的終末分化、凋亡〔19〕。Merlos-Suárez等〔20〕則通過(guò)流式細(xì)胞術(shù)發(fā)現(xiàn)免疫缺陷性小鼠的CCSCs高表達(dá)酪氨酸蛋白激酶受體EphB2,表現(xiàn)出強(qiáng)大的腫瘤生成和長(zhǎng)期自我更新潛能,但在細(xì)胞分化中逐漸沉默。
2.3轉(zhuǎn)移Dieter等〔21〕發(fā)現(xiàn)腫瘤起始細(xì)胞(TICs)存在細(xì)胞異質(zhì)性,具有維持連續(xù)異種移植腫瘤形成的長(zhǎng)期的(LT)-TICs主要儲(chǔ)存在骨髓中,不斷更新的LT-TICs促使腫瘤轉(zhuǎn)移的發(fā)生。高遷移率蛋白(HMG)A1是結(jié)腸癌細(xì)胞轉(zhuǎn)移分子機(jī)制中關(guān)鍵的轉(zhuǎn)錄因子。Belton等〔22〕發(fā)現(xiàn)在轉(zhuǎn)基因小鼠中HMGA1誘導(dǎo)CCSCs表達(dá)Twist1蛋白,抑制E-cadherin的表達(dá),促進(jìn)腫瘤轉(zhuǎn)移發(fā)生和發(fā)展;而HMGA1的敲除阻斷腫瘤細(xì)胞的錨定非依賴性生長(zhǎng)、移植瘤的發(fā)生,也抑制體內(nèi)肝轉(zhuǎn)移的發(fā)生。結(jié)腸癌的肝轉(zhuǎn)移現(xiàn)象還與TGFβ的參與有關(guān),Zubeldia等〔23〕將Mc38-luc TGFβ細(xì)胞注射到小鼠脾臟,發(fā)現(xiàn)TGFβ促進(jìn)原發(fā)腫瘤的生長(zhǎng)和肝轉(zhuǎn)移的發(fā)生,這可能與TGFβ引起Mc38細(xì)胞Smad2、Smad3和Smad1/5/8活化,增強(qiáng)細(xì)胞侵襲和跨內(nèi)皮遷移能力有關(guān)。另有研究發(fā)現(xiàn)結(jié)腸癌細(xì)胞株(HT29 和HCT-116)CCSCs分泌的高水平纖溶酶原激活抑制物(PAI)-1可顯著刺激這兩種細(xì)胞株遷移,而針對(duì)PAI-1的抗體能阻斷這種效應(yīng)〔24〕。
對(duì)人結(jié)腸癌HT29細(xì)胞株CD133+CCSCs的微小RNA(miRNAs)表達(dá)譜進(jìn)行研究,發(fā)現(xiàn)有11種過(guò)表達(dá)和8種低表達(dá)的miRNAs,如miR-429,miR-155,and miR-320d,而SW1116 CD133+/CD44+CCSCs則有31種上調(diào)和31種下調(diào)的miRNAs,如miR29a,miR29b,miR449b and miR4524。基因本體和通路分析顯示這些表達(dá)差異的miRNAs可進(jìn)一步調(diào)節(jié)CCSCs信號(hào)通路、細(xì)胞骨架及膜蛋白表達(dá),從而賦予CCSCs復(fù)發(fā)和轉(zhuǎn)移的生物學(xué)行為〔25,26〕。
3治療與預(yù)后
3.1CCSCs的治療化學(xué)抵抗是結(jié)腸癌藥物治療效果低下的主要原因,而眾多研究顯示CCSCs與結(jié)腸癌的化學(xué)抵抗關(guān)系密切。Chen等〔27〕發(fā)現(xiàn)ALDH1+HT29和HT29-taxol細(xì)胞株低表達(dá)miRNA125a/b,高表達(dá)ALDH1A3和Mcl1,這種miRNA125a/b引起ALDH1A3和Mcl1基因表達(dá)上調(diào)的機(jī)制提高了細(xì)胞生存能力,減少細(xì)胞凋亡,使CCSCs在化學(xué)抵抗中發(fā)揮關(guān)鍵作用。Wu等〔28〕對(duì)由CCSCs引發(fā)的免疫缺陷小鼠結(jié)腸腫瘤給予BMP4,發(fā)現(xiàn)BMP4可減弱腫瘤對(duì)治療的化學(xué)抵抗,增強(qiáng)5-Fu和奧沙利鉑的抗腫瘤效應(yīng);O′Brien等〔29〕發(fā)現(xiàn)沉默分化抑制因子ID1和ID3也可提高干細(xì)胞對(duì)化療藥物奧沙利鉑的敏感性;van Houdt等〔30〕則發(fā)現(xiàn)凋亡蛋白抑制劑BIRC6是伴肝轉(zhuǎn)移結(jié)腸癌病人CCSCs對(duì)奧沙利鉑和順鉑抵抗的重要調(diào)節(jié)因子,針對(duì)BIRC6的治療可能有助于消除CCSCs。另有研究顯示,表達(dá)同源異型盒基因cdx1的SW1222細(xì)胞株對(duì)紫杉醇誘導(dǎo)的細(xì)胞毒性有顯著抵抗,這與cdx1、bcl-2的表達(dá)、半胱氨酸蛋白酶(caspase)-3活力、微管相關(guān)蛋白(LC3)-Ⅱ/LC3-Ⅰ的比例上調(diào)有關(guān),cdx1的沉默和溶酶體抑制劑bafilomycinA的治療能提高紫杉醇誘導(dǎo)的細(xì)胞毒性,cdx1 siRNA的瘤內(nèi)注射可顯著抑制接種cdx1癌細(xì)胞的移植瘤生長(zhǎng)〔28〕。Bitarte等〔31〕對(duì)以伊立替康為基礎(chǔ)的一線藥物治療沒(méi)反應(yīng)的結(jié)腸癌患者觀察發(fā)現(xiàn),具有干細(xì)胞特性的結(jié)腸癌球中miRNA451表達(dá)下調(diào),而miRNA451的恢復(fù)可減少三磷酸腺苷結(jié)合轉(zhuǎn)運(yùn)蛋白(ABC)B1基因的表達(dá),導(dǎo)致癌細(xì)胞對(duì)伊立替康敏感,這個(gè)結(jié)果提示miRNA451是結(jié)腸癌病人發(fā)生藥物抵抗的一個(gè)重要因素。另有研究發(fā)現(xiàn)將表達(dá)特異腫瘤相關(guān)抗原Cep55來(lái)源的抗原蛋白Cep55/c10orf3_193 的CTL克隆41進(jìn)行過(guò)繼轉(zhuǎn)移,可顯著抑制對(duì)化療藥物伊立替康、依托泊甙抵抗的SW480細(xì)胞株CCSCs的增殖,提示Cep55/c10orf3-193蛋白為基礎(chǔ)的癌癥疫苗治療或者CTL的過(guò)繼轉(zhuǎn)移是治療有化療抵抗的CCSCs的一種可行途徑〔32〕。
3.2預(yù)后Padin-Iruegas等〔33〕從伴轉(zhuǎn)移的結(jié)腸癌病人的血樣本中分離循環(huán)癌干細(xì)胞,發(fā)現(xiàn)不同干細(xì)胞標(biāo)志物CD133,SOX2,OCT4 和TWIST1表達(dá)水平在治療過(guò)程的不同階段有顯著的不同。評(píng)估這些干細(xì)胞基因的表達(dá)對(duì)預(yù)測(cè)治療過(guò)程的療效是有用的,而樣本相對(duì)容易獲得使這種方法簡(jiǎn)便易行。Gerger等〔34〕通過(guò)DNA測(cè)序或聚合酶鏈?zhǔn)椒磻?yīng)-限制性片段長(zhǎng)度多態(tài)性方法(PCR-RFLP)觀察了234例以5-氟尿嘧啶(FU)為基礎(chǔ)的化療病人血液標(biāo)本中CCSCs基因的種系多態(tài)性,預(yù)測(cè)三期和高風(fēng)險(xiǎn)二期結(jié)腸癌病人的腫瘤復(fù)發(fā)時(shí)間,發(fā)現(xiàn)CD44 rs8193 C>T,ALCAM rs1157 G>A,LGR5 rs17109924 T>C 的小等位基因與腫瘤復(fù)發(fā)時(shí)間增加顯著相關(guān),明確了CCSCs基因的常見(jiàn)種系變體可作為結(jié)腸癌病人3期和高風(fēng)險(xiǎn)2期的獨(dú)立預(yù)后標(biāo)志物。Hu等〔35〕還發(fā)現(xiàn)伴糖尿病的結(jié)腸癌病人中晚期糖基化終產(chǎn)物受體(RAGE)及上游信號(hào)通路在維持CCSCs特性及致瘤性中具有重要作用,這項(xiàng)研究不但將結(jié)腸癌和糖尿病并發(fā)癥的發(fā)生聯(lián)系起來(lái),而且也提供了腫瘤發(fā)生危險(xiǎn)性評(píng)估和生物藥物治療的一種新途徑。
4參考文獻(xiàn)
1Schwitalla S,Fingerle AA,Cammareri P,etal.Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties〔J〕.Cell,2013;152(1-2):25-38.
2Yang G,Quan Y,Wang W,etal.Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations〔J〕.Br J Cancer,2012;106(9):1512-9.
3Zou J,Yu XF,Bao ZJ,etal.Proteome of human colon cancer stem cells:a comparative analysis〔J〕.World J Gastroenterol,2011;17(10):1276-85.
4Duan X,Li H,Chen H,etal.Discrimination of colon cancer stem cells using noncanonical amino acid〔J〕.Chem Commun(Camb),2012;48(72):9035-7.
5Ke J,Wu X,Wu X,etal.A subpopulation of CD24+cells in colon cancer cell lines possess stem cell characteristics〔J〕.Neoplasma,2012;59(3):282-8.
6Leng Z,Tao K,Xia Q,etal.Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells〔J〕.PLoS One,2013;8(2):e56082.
7Amsterdam A,Raanan C,Schreiber L,etal.Use of multiple biomarkers for the localization and characterization of colon cancer stem cells by indirect immunocytochemistry〔J〕.Int J Oncol,2012;41(1):285-91.
8Kobayashi S,Yamada-Okabe H,Suzuki M,etal.LGR5-positive colon cancer stem cells interconvert with drug-resistant LGR5-negative cells and are capable of tumor reconstitution〔J〕.Stem Cells,2012;30(12):2631-44.
9Sakthianandeswaren A,Christie M,D′Andreti C,etal.PHLDA1 expression marks the putative epithelial stem cells and contributes to intestinal tumorigenesis〔J〕.Cancer Res,2011;71(10):3709-19.
10Hart LS,Dolloff NG,Dicker DT,etal.Human colon cancer stem cells are enriched by insulin-like growth factor-1 and are sensitive to figitumumab〔J〕.Cell Cycle,2011;10(14):2331-8.
11Lin L,Liu Y,Li H,etal.Targeting colon cancer stem cells using a new curcumin analogue,GO-Y030〔J〕.Br J Cancer,2011;105(2):212-20.
12Lin JT,Wang JY,Chen MK,etal.Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6〔J〕.Exp Cell Res,2013;319(14):2216-29.
13Liu Y,Han ZP,Zhang SS,etal.Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer〔J〕.J Biol Chem,2011;286(28):25007-15.
14Zhou D,Zhang Y,Wu H,etal.Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein(Yap)overabundance〔J〕.Proc Natl Acad Sci USA,2011;108(49):E1312-20.
15Feng Y,Dai X,Li X,etal.EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis〔J〕.Cell Prolif,2012;45(5):413-9.
16Shenoy AK,Fisher RC,Butterworth EA,etal.Transition from colitis to cancer:high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors〔J〕.Cancer Res,2012;72(19):5091-100.
17Múnera J,Cecea G,Jedlicka P,etal.Ets2 regulates colonic stem cells and sensitivity to tumorigenesis〔J〕.Stem Cells,2011;29(3):430-9.
18Haffner MC,Chaux A,Meeker AK,etal.Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers〔J〕.Oncotarget,2011;2(8):627-37.
19Lombardo Y,Scopelliti A,Cammareri P,etal.Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice〔J〕.Gastroenterology,2011;140(1):297-309.
20Merlos-Suárez A,Barriga FM,Jung P,etal.The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse〔J〕.Cell Stem Cell,2011;8(5):511-24.
21Dieter SM,Ball CR,Hoffmann CM,etal.Distinct types of tumor-initiating cells form human colon cancer tumors and metastases〔J〕.Cell Stem Cell,2011;9(4):357-65.
22Belton A,Gabrovsky A,Bae YK,etal.HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells〔J〕.PLoS One,2012;7(1):e30034.
23Zubeldia IG,Bleau AM,Redrado M,etal.Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144〔J〕.Exp Cell Res,2013;319(3):12-22.
24Hogan NM,Joyce MR,Murphy JM,etal.Impact of mesenchymal stem cell secreted PAI-1 on colon cancer cell migration and proliferation〔J〕.Biochem Biophys Res Commun,2013;435(4):574-9.
25Zhang H,Li W,Nan F,etal.MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line〔J〕.Biochem Biophys Res Commun,2011;404(1):273-8.
26Fang Y,Xiang J,Chen Z,etal.miRNA expression profile of colon cancer stem cells compared to non-stem cells using the SW1116 cell line〔J〕.Oncol Rep,2012;28(6):2115-24.
27Chen J,Chen Y,Chen Z.MiR-125a/b regulates the activation of cancer stem cells in paclitaxel-resistant colon cancer〔J〕.Cancer Invest,2013;31(1):17-23.
28Wu S,Wang X,Chen J,etal.Autophagy of cancer stem cells is involved with chemoresistance of colon cancer cells〔J〕.Biochem Biophys Res Commun,2013;434(4):898-903.
29O′Brien CA,Kreso A,Ryan P,etal.ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21〔J〕.Cancer Cell,2012;21(6):777-92.
30van Houdt WJ,Emmink BL,Pham TV,etal.Comparative proteomics of colon cancer stem cells and differentiated tumor cells identifies BIRC6 as a potential therapeutic target〔J〕.Mol Cell Poteomics,2011;10(12):M111.011353.
31Bitarte N,Bandres E,Boni V,etal.MicroRNA-451 is involved in the self-renewal,tumorigenicity,and chemoresistance of colorectal cancer stem cells〔J〕.Stem Cells,2011;29(11):1661-71.
32Inoda S,Hirohashi Y,Torigoe T,etal.Cytotoxic T lymphocytes efficiently recognize human colon cancer stem-like cells〔J〕.Am J Pathol,2011;178(4):1805-13.
33Padin-Iruegas ME,Herranz-Carnero M,Aguin-Losada S,etal.Prognostic value of changes in the expression of stem cell markers in the peripheral blood of patients with colon cancer〔J〕.Oncol Rep,2013;29(6):2467-72.
34Gerger A,Zhang W,Yang D,etal.Common cancer stem cell gene variants predict colon cancer recurrence〔J〕.Clin Cancer Res,2011;17(21):6934-43.
35Hu X,Cheng Y.Possible participation of receptor for advanced glycation end products(RAGE)in the origin of cancer stem cells in diabetic patients with colon cancer〔J〕.Med Hypotheses,2013;80(5):620-3.
〔2015-04-09修回〕
(編輯王一涵)
基金項(xiàng)目:安徽省自然科學(xué)研究重點(diǎn)項(xiàng)目(KJ2014A147)
通訊作者:孫國(guó)平(1961-),男,博士,教授,博士生導(dǎo)師,主要從事腫瘤藥理及個(gè)體化治療研究。
〔中圖分類號(hào)〕R735.3
〔文獻(xiàn)標(biāo)識(shí)碼〕A
〔文章編號(hào)〕1005-9202(2016)11-2790-04;
doi:10.3969/j.issn.1005-9202.2016.11.107
1北京大學(xué)人民醫(yī)院消化科
2安徽醫(yī)科大學(xué)第一附屬醫(yī)院腫瘤內(nèi)科
第一作者:陳方軍(1973-),男,在讀博士,副教授,主要從事腫瘤藥理及個(gè)體化治療研究。