魏若堯,趙作濤,陳天成,刁 穎,李 摯,高 虹,孫勁旅
(中國(guó)醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物研究所,北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心, 北京 100021)
ChinJAllergyClinImmunol,2016,10(3):255- 263
變應(yīng)性接觸性皮炎(allergic contact dermatitis,ACD)是由半抗原-特應(yīng)性T細(xì)胞介導(dǎo)、于過(guò)敏原接觸皮膚后激發(fā)產(chǎn)生的遲發(fā)型超敏反應(yīng)(Ⅳ型超敏反應(yīng)),以抗原刺激后局部皮膚出現(xiàn)一系列的皮膚炎癥細(xì)胞浸潤(rùn)、炎癥介質(zhì)釋放為主要特征[1]。ACD是目前世界上職業(yè)性皮膚病的最大難題之一,據(jù)統(tǒng)計(jì)約占職業(yè)性疾病發(fā)病率的20%[2],這種職業(yè)性的接觸性過(guò)敏不僅存在于產(chǎn)業(yè)工人中,也常見(jiàn)于醫(yī)護(hù)人員、銀行職員中[3],在中國(guó)ACD的發(fā)病率也呈逐年上升趨勢(shì)[4]。目前,關(guān)于ACD的分子機(jī)制和細(xì)胞通路研究多基于動(dòng)物模型的接觸性超敏反應(yīng)(contact hypersen-sitivity,CHS),并已有許多文獻(xiàn)報(bào)道,也為找到ACD有效的治療手段奠定基礎(chǔ)。本文將近年來(lái)關(guān)于CHS的研究中,參與致敏階段與激發(fā)階段反應(yīng)的細(xì)胞及分子進(jìn)行綜述(圖1)。
半抗原
CHS是從皮膚與半抗原的第一次接觸開(kāi)始的。半抗原是一種小分子量(相對(duì)分子質(zhì)量<1 000)的化合物,常用于動(dòng)物模型的半抗原有二硝基氟苯(dinitrofluoroben-zene,DNFB)、惡唑酮、異硫氰酸熒光素(fluorescein isothiocyanate,F(xiàn)ITC)和硝基氯代苯(Trinitrochloro-benzene,TNCB)等。幾乎所有的半抗原都是親電子分子,因其小體積和親脂性的特點(diǎn),可以滲入皮膚并與皮膚蛋白的親核殘基共價(jià)結(jié)合。半抗原的共同特點(diǎn)為:自身不具有免疫原性,但通過(guò)與蛋白質(zhì)結(jié)合從而獲得免疫原性[5]。除此之外半抗原還具有促炎癥特點(diǎn),即可活化皮膚的固有免疫反應(yīng),調(diào)節(jié)朗格漢斯細(xì)胞(Langerhans cells,LCs)和真皮內(nèi)樹(shù)突狀細(xì)胞(dermal dendritic cells,dDCs)的募集,遷移和成熟[6- 7]。
抗原提呈細(xì)胞
皮膚在穩(wěn)態(tài)時(shí),至少有三種亞型的樹(shù)突狀細(xì)胞(dendritic cells,DCs)存在:LCs、CD103+dDCs、CD103-dDCs[8- 10]。LCs主要存在于表皮中,并且是皮膚中數(shù)量最多的DCs。CD103-dDCs約占dDCs的80%,CD103+dDCs約占10%[8- 10]。
LCs 長(zhǎng)久以來(lái)一直被認(rèn)為是在CHS致敏階段起關(guān)鍵作用的抗原呈遞細(xì)胞,并誘導(dǎo)1型輔助性T細(xì)胞(Th1細(xì)胞)/1型細(xì)胞毒性T細(xì)胞(Tc1細(xì)胞)產(chǎn)生。
圖1CHS參與細(xì)胞與分步反應(yīng)示意圖
Fig1Illustration of the sensitization and elicitation phase of CHS
CHS:接觸性超敏反應(yīng)
原因在于:(1)LCs在體外具有有效的抗原提呈能力;(2)LCs在表皮中為含量最多的DCs;(3)通過(guò)人工使用藥物移除皮膚中的LCs后,CHS反應(yīng)減輕[11]。但最近有研究表明,在致敏階段消除LCs不會(huì)對(duì)CHS反應(yīng)造成影響。反而,在致敏階段消除CD103+dDCs則會(huì)顯著地減輕CHS反應(yīng)[8,12- 13]?,F(xiàn)在通常認(rèn)為CD103+dDCs是在致敏階段最為重要的DCs亞型。但是CD103+dDCs也許對(duì)于致敏并非必不可少。有研究證明,缺失CD103+dDCs的Batf-/-小鼠,也可以表現(xiàn)出CHS反應(yīng)[14]。因此,盡管現(xiàn)在 CD103+dDCs被認(rèn)為是調(diào)節(jié)CHS致敏階段的關(guān)鍵性細(xì)胞,但最近的研究數(shù)據(jù)說(shuō)明也許所有的DCs都具有調(diào)節(jié)致敏的能力。除了LCs和dDCs,角質(zhì)細(xì)胞(Keratinocytes,KCs)、肥大細(xì)胞和巨噬細(xì)胞也許也有抗原提呈的作用[15]。
肥大血細(xì)胞活化
最初,肥大細(xì)胞在CHS中的作用是有爭(zhēng)議的。在一些研究中,肥大細(xì)胞缺失的小鼠在TNCB引起的CHS中表現(xiàn)出炎癥反應(yīng)減輕[16- 17]。另外一些研究則導(dǎo)致炎癥表現(xiàn)惡化[18]。但在這些研究中,都使用C57BL/6-KitW-sh/W-sh或者WBB6F1-Kitw/w-v小鼠模型。這些小鼠不僅表現(xiàn)為肥大細(xì)胞缺失,同時(shí)也有著許多其他的免疫改變。使其影響肥大細(xì)胞在CHS中的作用的研究。
2011年,兩個(gè)課題組建立了一種新型的肥大細(xì)胞缺失小鼠模型[19- 20]。其肥大細(xì)胞可以通過(guò)白喉毒素的調(diào)節(jié)有條件的缺失。通過(guò)實(shí)驗(yàn),肥大細(xì)胞缺失組小鼠均表現(xiàn)為CHS反應(yīng)減輕[20]。同時(shí),肥大細(xì)胞細(xì)胞膜上的腫瘤壞死因子(tumor necrosis factor,TNF)可以通過(guò)細(xì)胞間黏附分子- 1(intercellular cell adhesion molecule- 1,ICAM- 1)刺激DCs。而活化的DCs則反過(guò)來(lái)增加肥大細(xì)胞的Ca2+的攝入。即肥大細(xì)胞可以和DCs相互活化。因此當(dāng)肥大細(xì)胞缺失時(shí),在CHS致敏階段,皮膚中DCs的遷移和T細(xì)胞的活化都發(fā)生了削弱從而造成CHS反應(yīng)減弱。在激發(fā)階段時(shí),由于肥大細(xì)胞缺失,組胺分泌量減少?gòu)亩芡ㄍ感越档鸵矔?huì)造成CHS反應(yīng)減弱[19]。
T細(xì)胞活化
T細(xì)胞的活化依賴(lài)三種信號(hào):(1)第一種信號(hào)是T細(xì)胞受體(T cell receptor,TCR)和主要組織相容性復(fù)合體(major histocompatibility complex,MHC)/肽復(fù)合體之間的相互作用。半抗原的物理特點(diǎn)造成抗原提呈細(xì)胞(antigen presenting cells,APCs)對(duì)它的處理和提呈通路的不同。一種為半抗原和胞外的細(xì)胞表面蛋白結(jié)并發(fā)內(nèi)化至胞內(nèi),然后被內(nèi)含體/溶酶體處理為肽段并提呈給Ⅱ型MHC分子,活化CD4+T細(xì)胞。半抗原結(jié)合的胞外的細(xì)胞表面蛋白也會(huì)交叉提呈給CD8+T細(xì)胞。另一種是因?yàn)榇蠖鄶?shù)半抗原具有脂溶性,可以通過(guò)被動(dòng)擴(kuò)散進(jìn)入細(xì)胞然后與胞內(nèi)蛋白結(jié)合。通過(guò)內(nèi)生途徑的處理,與Ⅰ型MHC分子結(jié)并發(fā)提呈給 CD8+T細(xì)胞[21]。(2)第二種信號(hào)是APCs上的共刺激分子:CD80 和CD86,它們是在T細(xì)胞上表達(dá)的CD28分子的配體[22]。這個(gè)通路對(duì)CHS反應(yīng)來(lái)說(shuō)是必不可少的,有研究顯示CD28缺失的小鼠幾乎不表現(xiàn)出任何的CHS反應(yīng)[23]。在CHS反應(yīng)中CD86的作用比CD80的作用更加重要,這與CD86在LCs 上的表達(dá)量更高有關(guān)[22, 24]。(3)第三種信號(hào)是促使T細(xì)胞分化成為不同亞型的效應(yīng)細(xì)胞的關(guān)鍵。CD4+T細(xì)胞的分化主要取決于在APCs和T細(xì)胞相互作用時(shí)分泌的細(xì)胞因子的類(lèi)型。白細(xì)胞介素(interleukin,IL)- 12和γ干擾素(interferon-γ,IFN-γ)存在時(shí),CD4+T細(xì)胞分化成為T(mén)h1細(xì)胞,釋放IL- 2和IFN-γ; 在IL- 4作用下,CD4+T細(xì)胞分化為2型輔助性T細(xì)胞(Th2細(xì)胞),分泌IL- 4、IL- 5和IL- 13[25]。CD8+T細(xì)胞分化成為T(mén)c1和2型細(xì)胞毒性T細(xì)胞(Tc2細(xì)胞)所需要的細(xì)胞活素與CD4+T細(xì)胞相同[26],并合成相同類(lèi)型的細(xì)胞活素(Tc1分泌IL- 2、IFN-γ和TNF-α,Tc2分泌IL- 4、IL- 5和IL- 10)。
在活化之后,T細(xì)胞通過(guò)淋巴輸出管遷移出淋巴結(jié),進(jìn)入循環(huán)。生成兩種亞型的記憶T細(xì)胞。效應(yīng)記憶T細(xì)胞(Tem),不表達(dá)趨化因子受體CCR7,可以快速進(jìn)入炎癥器官進(jìn)行作用。而儲(chǔ)存記憶T細(xì)胞(Tcm)表達(dá)CCR7,具有從血液中再循環(huán)至引流淋巴結(jié)(draining lymph nodes,dLNs)的能力。當(dāng)再次暴露于半抗原時(shí)可以快速地增殖??乖禺愋訲細(xì)胞從dLNs遷移出標(biāo)志著致敏過(guò)程的結(jié)束(圖2)。
與皮膚免疫相關(guān)的CD4輔助T細(xì)胞(Th細(xì)胞)和CD8細(xì)胞毒性T細(xì)胞(Tc細(xì)胞)可以再細(xì)分為三個(gè)亞型:Th1/Tc1、Th2/Tc2和Th17/Tc17。Th1/Tc1細(xì)胞的特點(diǎn)在于分泌IFN-γ,Th2/Tc2細(xì)胞分泌IL- 4、IL- 5和IL- 13,同時(shí)Th17/Tc17分泌IL- 17A和IL- 22[27]。每種半抗原會(huì)具有不同的特點(diǎn),所以誘導(dǎo)產(chǎn)生的占主導(dǎo)地位的Th/Tc亞型也是不同的,不同的實(shí)驗(yàn)鼠品系也會(huì)造成不同的結(jié)果。我們?cè)诮忉屆糠NT細(xì)胞在接觸性皮炎中的作用時(shí),也應(yīng)該考慮這一點(diǎn)。常用的可以引起接觸性皮炎的半抗原包括TNCB、DNFB和FITC。其中TNCB、DNFB通常被認(rèn)為促進(jìn)Th1細(xì)胞的激活和IFN-γ的釋放;FITC則因?yàn)猷彾交妮o助作用促進(jìn)Th2細(xì)胞的激活和IL- 4的釋放[28]。
圖2T細(xì)胞活化示意圖
Fig2Activation of the T cell by contact allergens
IL- 17 被報(bào)道在致敏階段和激發(fā)階段都起到了作用[29- 30]。IL- 17也由其他細(xì)胞如γδT 細(xì)胞和中性粒細(xì)胞產(chǎn)生。實(shí)驗(yàn)數(shù)據(jù)證明,在接觸性皮炎的激發(fā)期,各T細(xì)胞亞型的相對(duì)重要性取決于實(shí)驗(yàn)所使用的模型。與接觸性皮炎致敏期和激發(fā)期抗原特異性T細(xì)胞出現(xiàn)并激活相關(guān)的因素可能包括抗原第一次呈遞時(shí)的微環(huán)境(皮膚或其他身體部位;正常皮膚或炎癥皮膚),抗原的類(lèi)型以及個(gè)體的基因背景。模型動(dòng)物對(duì)于動(dòng)物房設(shè)施內(nèi)存在的微生物所產(chǎn)生的反復(fù)的免疫反應(yīng),在一定條件下也會(huì)影響到T細(xì)胞的類(lèi)型。
固有免疫細(xì)胞的活化
在激發(fā)的起始階段,中性粒細(xì)胞對(duì)皮膚的浸潤(rùn)是效應(yīng)T細(xì)胞浸潤(rùn)的前提[17, 31- 32]。效應(yīng)T細(xì)胞在炎癥皮膚中的募集和停留只部分地依賴(lài)于抗原特異性[33]。因此效應(yīng)Th1/Tc1細(xì)胞可以隨著半抗原引起的炎癥浸潤(rùn)至皮膚。當(dāng)半抗原的濃度無(wú)法引起這個(gè)非抗原特異性的炎癥時(shí),CHS反應(yīng)不會(huì)發(fā)生[7]。半抗原引起皮膚炎癥包括直接的細(xì)胞接觸和間接的活化Toll樣受體(Toll-like receptor,TLRs)和NOD樣受體(NOD-like receptors,NLRs)。捕獲抗原的皮膚DCs激活效應(yīng)T細(xì)胞,并使之產(chǎn)生細(xì)胞因子。細(xì)胞因子激發(fā)抗原特異性炎癥。近來(lái)有報(bào)道稱(chēng)固有免疫系統(tǒng)中的TLRs和NLRs激活是引起半抗原炎癥的重要機(jī)制[5, 34- 35]。半抗原與細(xì)胞接觸引起損傷,致使活性氧類(lèi)(reactive oxygen species,ROS)生成[36- 37]。ROS降解細(xì)胞外基質(zhì)(如透明質(zhì)酸),形成低分子量透明質(zhì)酸[5]。這樣的低分子量透明質(zhì)酸刺激周邊細(xì)胞,如DCs、KCs和肥大細(xì)胞上表達(dá)的 TLR2和TLR4[38- 40],最終引起核素-κB(nuclear factor-kappaB,NF-κB)和蛋白酶分裂原(mitogen-activated protein kinases,MAPKs)活化,并引起多種促炎細(xì)胞因子和趨化因子釋放。這些細(xì)胞活素和趨化因子驅(qū)使DCs遷移至dLNs并引導(dǎo)炎性細(xì)胞浸潤(rùn)至皮膚。半抗原同時(shí)引起三磷酸腺苷(adenosine triphosphate,ATP)的釋放。ATP刺激嘌呤能受體P2X7,此受體觸發(fā)NOD的亮氨酸富集區(qū)域受體(leucine rich repeat,LRR)和pyrin 區(qū)域(NLR family pyrin domain containing3,NLRP3),激活KCs中的NLRP3。KCs釋放IL- 1β和IL- 18,這兩種IL也可以造成皮膚炎癥[41- 42]。半抗原也會(huì)引起肥大細(xì)胞釋放組胺,增加血管通透性??傮w來(lái)說(shuō),半抗原引起固有免疫細(xì)胞活化,啟動(dòng)了中性粒細(xì)胞浸潤(rùn),然后引起效應(yīng)T細(xì)胞在皮膚中募集(圖3)。
圖3固有免疫細(xì)胞活化過(guò)程示意圖[43]
Fig3Activation of the innate immune system by contact allergens[43]
白細(xì)胞簇狀結(jié)構(gòu)形成
在抗原引起的抗原非特異性炎癥之后,白細(xì)胞簇狀結(jié)構(gòu)形成是皮膚中效應(yīng)T細(xì)胞的活化和T細(xì)胞調(diào)節(jié)的抗原特異性炎癥形成的必要的一環(huán)。T細(xì)胞浸潤(rùn)進(jìn)入皮膚,和攜帶抗原的DCs形成穩(wěn)定的相互作用并釋放細(xì)胞因子[44]。DCs在效應(yīng)T細(xì)胞的活化過(guò)程中起到重要的作用[45]。由活化的T細(xì)胞產(chǎn)生的細(xì)胞因子刺激皮膚中固有細(xì)胞,然后進(jìn)一步引發(fā)T細(xì)胞的募集和增殖。最近的研究發(fā)現(xiàn)皮膚中的白細(xì)胞在抗原刺激后形成簇狀結(jié)構(gòu),這個(gè)結(jié)構(gòu)對(duì)高效地活化皮膚中的效應(yīng)T細(xì)胞十分重要[45]。在皮膚處于正常狀態(tài)時(shí),皮膚中的DCs是在皮膚中隨機(jī)分布,積極運(yùn)動(dòng)的。但是,在接觸半抗原后,DCs在毛細(xì)小靜脈周?chē)纬纱貭罱Y(jié)構(gòu),效應(yīng)T細(xì)胞也在其四周積累成為簇狀結(jié)構(gòu)。若巨噬細(xì)胞缺失,則DCs的簇狀結(jié)構(gòu)完全無(wú)法形成,同時(shí)也伴隨著在皮膚中效應(yīng)T細(xì)胞活化的削弱,阻斷IL- 1或趨化因子2(C-X-C motif chemokine 2,CXCL2)削弱了白細(xì)胞簇狀結(jié)構(gòu)的形成和效應(yīng)T細(xì)胞的活化。KCs是IL- 1的主要生產(chǎn)者。在兩種亞型的巨噬細(xì)胞中,經(jīng)典激活的M1型和選擇激活的M2型巨噬細(xì)胞,M2型具有顯著較高水平的IL- 1受體表達(dá),IL- 1作用于M2型巨噬細(xì)胞后,釋放CXCL2[45]。這個(gè)結(jié)果表明,白細(xì)胞簇狀結(jié)構(gòu)對(duì)于皮膚中效應(yīng)T細(xì)胞的活化是必不可少的,IL- 1、CXCL2通過(guò)M2型巨噬細(xì)胞調(diào)節(jié)簇狀結(jié)構(gòu)形成[45]。
B細(xì)胞、自然殺傷T細(xì)胞和自然殺傷細(xì)胞的活化
最近的研究證實(shí)B細(xì)胞在CHS中的重要意義,特別是對(duì)其亞型B- 1細(xì)胞的研究較為詳細(xì)。有研究表明T細(xì)胞在早期補(bǔ)體活化的時(shí)候募集并且產(chǎn)生C5a補(bǔ)體片段,C5a受體敲除小鼠在激發(fā)2 h和24 h之后,均表現(xiàn)出耳腫脹反應(yīng)的減輕。說(shuō)明C5a在CHS的激發(fā)階段中起作用。在致敏后的1 h之內(nèi),B- 1細(xì)胞被激活,并遷移至脾和淋巴結(jié),產(chǎn)生半抗原特異性的lgM抗體[46]。這些抗體與半抗原結(jié)合為免疫復(fù)合體從而活化補(bǔ)體。這種補(bǔ)體片段大量生成并合成C5a,然后發(fā)起效應(yīng)T細(xì)胞的募集并促成小鼠在24 h后皮膚的反應(yīng)[47]。體現(xiàn)了在此過(guò)程中的B細(xì)胞的作用。
盡管 B- 1 細(xì)胞的激活不依賴(lài)于T細(xì)胞,但受到自然殺傷(natural killer,NK)T細(xì)胞調(diào)節(jié)。NKT細(xì)胞的對(duì)B- 1細(xì)胞的激活作用主要依靠在致敏過(guò)程中由皮膚釋放的胞內(nèi)脂質(zhì)。這種脂質(zhì)和肝臟的APCs結(jié)合引起肝臟的NKT細(xì)胞釋放IL- 4。半抗原蛋白質(zhì)復(fù)合體從致敏部位和IL- 4一同釋放,共同活化B- 1細(xì)胞[48]。與野生型小鼠相比,B細(xì)胞缺失小鼠CHS反應(yīng)減弱[47]。綜上所述,B細(xì)胞在CHS反應(yīng)中確實(shí)起到了一定作用。
長(zhǎng)期以來(lái)NK細(xì)胞被認(rèn)為是固有免疫系統(tǒng)的細(xì)胞。但是,最近許多研究顯示其有一些亞型具有記憶性。這種特征使NK細(xì)胞也成為適應(yīng)性免疫系統(tǒng)的一部分。有實(shí)驗(yàn)利用T細(xì)胞和B細(xì)胞缺失的小鼠模型,發(fā)現(xiàn)NK細(xì)胞展現(xiàn)出了對(duì)半抗原的抗原特異性免疫記憶。通過(guò)進(jìn)一步研究,發(fā)現(xiàn)這種記憶性反應(yīng)由肝臟NK細(xì)胞調(diào)控[49- 50]。NK細(xì)胞在未來(lái)將會(huì)在CHS和其他類(lèi)型的炎癥反應(yīng)中得到更徹底的研究。
調(diào)節(jié)性T細(xì)胞和B細(xì)胞
對(duì)于接觸性皮炎中調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)的調(diào)節(jié)機(jī)制的研究逐漸增多,在激發(fā)期之前,外源轉(zhuǎn)移Tregs,會(huì)抑制耳腫脹反應(yīng)。對(duì)于這種抑制反應(yīng),目前提出的機(jī)制有以下幾種:(1)Tregs分泌的IL- 10通過(guò)下調(diào)血管內(nèi)皮細(xì)胞中的E/P選擇蛋白的表達(dá),抑制了白細(xì)胞進(jìn)入皮膚[51]。(2)通過(guò)腺苷調(diào)節(jié)機(jī)制,Tregs通過(guò)大量表達(dá)的CD39/73降解ATP,形成腺苷。腺苷抑制白細(xì)胞活性,同時(shí)也可以通過(guò)下調(diào)血管內(nèi)皮細(xì)胞中的E/P調(diào)節(jié)蛋白類(lèi)抑制白細(xì)胞進(jìn)入皮膚[52]。但是,ATP不僅是生成腺苷的底物,同時(shí)也可以作用于Tregs上的P2X7受體,激活Tregs的免疫抑制作用[53]。在接觸性皮炎的致敏期移除Tregs同樣也可以抑制炎癥反應(yīng)。淋巴結(jié)中的Tregs通過(guò)ATP激活獲得活性顯性,活化的Tregs和淋巴結(jié)中的DCs結(jié)合,造成與激活的CD8 T細(xì)胞結(jié)合的DCs減少[54]。當(dāng)致敏期的Tregs被剔除之后,會(huì)造成CD4和CD8 T細(xì)胞的更高水平的表達(dá),引起增強(qiáng)耳腫脹反應(yīng)并延長(zhǎng)其反應(yīng)時(shí)間。說(shuō)明內(nèi)源性Tregs對(duì)調(diào)控致敏也存在特有的作用[31]。在激發(fā)期Tregs被去除時(shí),也造成了耳腫脹的增強(qiáng)和反應(yīng)時(shí)間的延長(zhǎng),證明Tregs對(duì)于炎癥終止的作用[55]。在炎癥過(guò)程中,皮膚中的Tregs會(huì)顯著增加,證明Tregs對(duì)炎癥部位存在抑制作用。曾有報(bào)道稱(chēng),在正常皮膚中CCR4是對(duì)Tregs遷移至皮膚中起關(guān)鍵性作用的受體[56]。但最近有報(bào)道稱(chēng)CCR4受體缺失對(duì)Tregs向皮膚遷移至炎癥激發(fā)部位并無(wú)顯著的抑制作用。因?yàn)樵诩ぐl(fā)期的皮膚中CCR4缺失小鼠表現(xiàn)出相同甚至更高水平的Tregs數(shù)目[57]。在接觸性皮炎發(fā)生過(guò)程中,其他趨化因子受體(如CCR10),可能會(huì)對(duì)CCR4的作用產(chǎn)生代償。
除了Tregs,調(diào)節(jié)性B細(xì)胞(regulatory B cells,Bregs)被認(rèn)為是接觸性皮炎的過(guò)程中存在的另一種調(diào)節(jié)細(xì)胞。Bregs的標(biāo)志為細(xì)胞表面的CD1bCD5+,并分泌大量IL- 10[58- 59]。有1%~2%的脾臟B220+T細(xì)胞是Bregs。CD19缺乏小鼠表現(xiàn)出炎癥反應(yīng)增強(qiáng),將Bregs轉(zhuǎn)移至CD19缺失小鼠體內(nèi)可以正?;装Y程度[60]。
ACD的炎癥反應(yīng)涉及許多不同的通路和免疫機(jī)制,包括大量不同的細(xì)胞類(lèi)型、細(xì)胞因子、趨化因子和受體,還涉及局部和系統(tǒng)免疫反應(yīng),并同時(shí)覆蓋了固有免疫系統(tǒng)和自身免疫系統(tǒng)。這使得CHS模型為許多機(jī)制的研究提供了合適的研究模型。許多免疫調(diào)節(jié)劑類(lèi)藥物(如TNF-α抑制劑、IL- 6 拮抗劑、IL- 12抑制劑或CTLA4-Ig拮抗劑)在CHS模型中顯示了很好的效果。這些情況說(shuō)明這種模型可能在抗炎前體藥物的體內(nèi)機(jī)制研究上發(fā)揮重要作用。但是,關(guān)于CHS反應(yīng)還有許多未知方面需要在未來(lái)研究中進(jìn)一步探索,如:半抗原如何激活固有免疫系統(tǒng)并調(diào)節(jié)信號(hào)激活A(yù)PCs。此外,第二次的抗原提呈過(guò)程中,相關(guān)的定位和細(xì)胞類(lèi)型也需要進(jìn)一步的研究。同時(shí),B細(xì)胞、NK細(xì)胞、NKT細(xì)胞在CHS反應(yīng)中表現(xiàn)出的作用使得研究更加復(fù)雜。而且更多的細(xì)胞類(lèi)型,如KCs、肥大細(xì)胞和血小板對(duì)CHS反應(yīng)的重要作用以及未知的受體、通路和遞質(zhì)在未來(lái)肯定還會(huì)被不斷發(fā)現(xiàn)。
[1]Huang C, Liu W, Hu Y, et al. Updated prevalences of asthma, allergy, and airway symptoms, and a systematic review of trends over time for childhood asthma in Shanghai, China[J]. PLoS One, 2015, 10: e0121577.
[2]Peiser M, Tralau T, Heidler J, et al. Allergic contact dermatitis: epidemiology, molecular mechanisms,invitromethods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany[J]. Cell Mol Life Sci, 2012, 69: 763- 781.
[3]Sibbald B, Rink E. Epidemiology of seasonal and perennial rhinitis: clinical presentation and medical history[J]. Thorax, 1991, 46: 895- 901.
[4]Silverberg JI, Braunstein M, Lee-Wong M. Association between climate factors, pollen counts, and childhood hay fever prevalence in the United States[J]. J Allergy Clin Immunol, 2015, 135: 463- 469.
[5]Martin SF, Dudda JC, Bachtanian E, et al. Toll-like receptor and IL- 12 signaling control susceptibility to contact hypersensitivity[J]. J Exp Med, 2008, 205: 2151- 2162.
[6]Villén J, Rodríguez-Mias RA, Núez JI, et al. Rational dissection of binding surfaces for mimicking of discontinuous antigenic sites[J]. Chem Biol, 2006, 13: 815- 823.
[7]Grabbe S, Steinert M, Mahnke K, et al. Dissection of antigenic and irritative effects of epicutaneously applied haptens in mice. Evidence that not the antigenic component but nonspecific proinflammatory effects of haptens determine the concentration-dependent elicitation of allergic contact dermatitis[J]. J Clin Invest, 1996, 98: 1158- 1164.
[8]Bursch LS, Wang L, Igyarto B, et al. Identification of a novel population of Langerin+ dendritic cells[J]. J Exp Med, 2007, 204: 3147- 3156.
[9]Ginhoux F, Collin MP, Bogunovic M, et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state[J]. J Exp Med, 2007, 204: 3133- 3146.
[10] Poulin LF, Henri S, de Bovis B, et al. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells[J]. J Exp Med, 2007, 204: 3119- 3131.
[11] McMinn PC, Halliday GM, Muller HK. Effects of gliotoxin on Langerhans’ cell function: contact hypersensi-tivity responses and skin graft survival[J]. Immunology, 1990, 71: 46- 51.
[12] Kissenpfennig A, Henri S, Dubois B, et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells[J]. Immunity, 2005, 22: 643- 654.
[13] Wang L, Bursch LS, Kissenpfennig A, et al. Langerin expressing cells promote skin immune responses under defined conditions[J]. J Immunol, 2008, 180: 4722- 4727.
[14] Edelson BT, KC W, Juang R, et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells[J]. J Exp Med, 2010, 207: 823- 836.
[15] Grabbe S, Schwarz T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity[J]. Immunol Today, 1998, 19: 37- 44.
[16] Askenase PW, Van Loveren H, Kraeuter-Kops S, et al. Defective elicitation of delayed-type hypersensitivity in W/Wv and SI/SId mast cell- deficient mice[J]. J Immunol, 1983, 131: 2687- 2694.
[17] Biedermann T, Kneilling M, Mailhammer R, et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2[J]. J Exp Med, 2000, 192: 1441- 1452.
[18] Mekori YA, Galli SJ. Undiminished immunologic tolerance to contact sensitivity in mast cell-deficient W/Wv and Sl/Sld mice[J]. J Immunol, 1985, 135: 879- 885.
[19] Dudeck A, Dudeck J, Scholten J, et al. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens[J]. Immunity, 2011, 34: 973- 984.
[20] Otsuka A, Kubo M, Honda T, et al. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity[J]. PLoS One, 2011, 6: e25538.
[21] Kalish RS, Wood JA, LaPorte A. Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cellsinvitro[J]. J Clin Invest, 1994, 93: 2039- 2047.
[22] Reiser H, Schneeberger EE. Expression and function of B7- 1 and B7- 2 in hapten-induced contact sensitivity[J]. Eur J Immunol, 1996, 26: 880- 885.
[23] Kondo S, Kooshesh F, Wang B, et al. Contribution of the CD28 molecule to allergic and irritant-induced skin reactions in CD28 -/- mice[J]. J Immunol, 1996, 157: 4822- 4829.
[24] Xu H, Heeger PS, Fairchild RL. Distinct roles for B7- 1 and B7- 2 determinants during priming of effector CD8+Tc1 and regulatory CD4+Th2 cells for contact hypersensitivity[J]. J Immunol, 1997, 159: 4217- 4226.
[25] Nguyen TH, Casale TB. Immune modulation for treatment of allergic disease[J]. Immunol Rev, 2011, 242: 258- 271.
[26] Sad S, Marcotte R, Mosmann TR. Cytokine-induced differentiation of precursor mouse CD8+T cells into cytotoxic CD8+T cells secreting Th1 or Th2 cytokines[J]. Immunity, 1995, 2: 271- 279.
[27] Weaver CT, Hatton RD, Mangan PR, et al. IL- 17 family cytokines and the expanding diversity of effector T cell lineages[J]. Annu Rev Immunol, 2007, 25: 821- 852.
[28] Larson RP, Zimmerli SC, Comeau MR, et al. Dibutyl phthalate-induced thymic stromal lymphopoietin is required for Th2 contact hypersensitivity responses[J]. J Immunol, 2010, 184: 2974- 2984.
[29] Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL- 17-deficient mice, causing suppression of allergic cellular and humoral responses[J]. Immunity, 2002, 17: 375- 387.
[30] He D, Wu L, Kim HK, et al. IL- 17 and IFN-gamma mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses[J]. J Immunol, 2009, 183: 1463- 1470.
[31] Honda T, Matsuoka T, Ueta M, et al. Prostaglandin E(2)-EP(3) signaling suppresses skin inflammation in murine contact hypersensitivity[J]. J Allergy Clin Immunol, 2009, 124: 809- 818, e2.
[32] Engeman T, Gorbachev AV, Kish DD, et al. The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites[J]. J Leukoc Biol, 2004, 76: 941- 949.
[33] Honda T, Egen JG, L?mmermann T, et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues[J]. Immunity, 2014, 40: 235- 247.
[34] Kaplan DH, Igyártó BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis[J]. Nat Rev Immunol, 2012, 12: 114- 124.
[35] Martin SF, Esser PR, Weber FC, et al. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis[J]. Allergy, 2011, 66: 1152- 1163.
[36] Galbiati V, Papale A, Galli CL, et al. Role of ROS and HMGB1 in contact allergen-induced IL- 18 production in human keratinocytes[J]. J Invest Dermatol, 2014, 134: 2719- 2727.
[37] Kim DH, Byamba D, Wu WH, et al. Different characteristics of reactive oxygen species production by human keratinocyte cell line cells in response to allergens and irritants[J]. Exp Dermatol, 2012, 21: 99- 103.
[38] Lebre MC, van der Aar AM, van Baarsen L, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9[J]. J Invest Dermatol, 2007, 127: 331- 341.
[39] Mempel M, Voelcker V, K?llisch G, et al. Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent[J]. J Invest Dermatol, 2003, 121: 1389- 1396.
[40] Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses[J]. Nat Immunol, 2004, 5: 987- 995.
[41] Watanabe H, Gehrke S, Contassot E, et al. Danger signaling through the inflammasome acts as a master switch between tolerance and sensitization[J]. J Immunol, 2008, 180: 5826- 5832.
[42] Sutterwala FS, Ogura Y, Szczepanik M, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase- 1[J]. Immunity, 2006, 24: 317- 327.
[43] Honda T, Kabashima K. Novel concept of iSALT (inducible skin-associated lymphoid tissue) in the elicitation of allergic contact dermatitis[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2016, 92: 20- 28.
[44] Egawa G, Honda T, Tanizaki H, et al.Invivoimaging of T-cell motility in the elicitation phase of contact hypersensitivity using two-photon microscopy[J]. J Invest Dermatol, 2011, 131: 977- 979.
[45] Natsuaki Y, Egawa G, Nakamizo S, et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin[J]. Nat Immunol, 2014, 15: 1064- 1069.
[46] Itakura A, Szczepanik M, Campos RA, et al. An hour after immunization peritoneal B- 1 cells are activated to migrate to lymphoid organs where within 1 day they produce IgM antibodies that initiate elicitation of contact sensitivity[J]. J Immunol, 2005, 175: 7170- 7178.
[47] Tsuji RF, Szczepanik M, Kawikova I, et al. B cell-dependent T cell responses: IgM antibodies are required to elicit contact sensitivity[J]. J Exp Med, 2002, 196: 1277- 1290.
[48] Campos RA, Szczepanik M, Itakura A, et al. Cutaneous immunization rapidly activates liver invariant Valpha14 NKT cells stimulating B- 1 B cells to initiate T cell recruitment for elicitation of contact sensitivity[J]. J Exp Med, 2003, 198: 1785- 1796.
[49] O’Leary JG, Goodarzi M, Drayton DL, et al. T cell- and B cell-independent adaptive immunity mediated by natural killer cells[J]. Nat Immunol, 2006, 7: 507- 516.
[50] Paust S, Gill HS, Wang BZ, et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses[J]. Nat Immunol, 2010, 11: 1127- 1135.
[51] Ring S, Sch?fer SC, Mahnke K, et al. CD4+CD25+regulatory T cells suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed tissue[J]. Eur J Immunol, 2006, 36: 2981- 2992.
[52] Ring S, Oliver SJ, Cronstein BN, et al. CD4+CD25+regulatory T cells suppress contact hypersensitivity reactions through a CD39, adenosine-dependent mechanism[J]. J Allergy Clin Immunol, 2009, 123: 1287- 1296, e2.
[53] Ring S, Enk AH, Mahnke K. ATP activates regulatory T cellsinvivoduring contact hypersensitivity reactions[J]. J Immunol, 2010, 184: 3408- 3416.
[54] Ring S, Karakhanova S, Johnson T, et al. Gap junctions between regulatory T cells and dendritic cells prevent sensitization of CD8(+) T cells[J]. J Allergy Clin Immunol, 2010, 125: 237- 246, e1- 7.
[55] Tomura M, Honda T, Tanizaki H, et al. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice[J]. J Clin Invest, 2010, 120: 883- 893.
[56] Dudda JC, Perdue N, Bachtanian E, et al. Foxp3+regulatory T cells maintain immune homeostasis in the skin[J]. J Exp Med, 2008, 205: 1559- 1565.
[57] Lehtim?ki S, Tillander S, Puustinen A, et al. Absence of CCR4 exacerbates skin inflammation in an oxazolone-induced contact hypersensitivity model[J]. J Invest Dermatol, 2010, 130: 2743- 2751.
[58] Bouaziz JD, Yanaba K, Tedder TF. Regulatory B cells as inhibitors of immune responses and inflammation[J]. Immunol Rev, 2008, 224: 201- 214.
[59] Yanaba K, Bouaziz JD, Haas KM, et al. A regulatory B cell subset with a unique CD1dhiCD5+phenotype controls T cell-dependent inflammatory responses[J]. Immunity, 2008, 28: 639- 650.
[60] Watanabe R, Fujimoto M, Ishiura N, et al. CD19 expression in B cells is important for suppression of contact hypersensitivity[J]. Am J Pathol, 2007, 171: 560- 570.