• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      水氮用量對(duì)設(shè)施栽培蔬菜地土壤氨揮發(fā)損失的影響

      2016-08-24 09:09:29李銀坤武雪萍武其甫吳會(huì)軍
      關(guān)鍵詞:銨態(tài)氮菜地黃瓜

      李銀坤, 武雪萍, 武其甫, 吳會(huì)軍

      (1 北京農(nóng)業(yè)智能裝備技術(shù)研究中心, 北京 100097; 2 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,耕地培育技術(shù)國家工程實(shí)驗(yàn)室, 北京 100081; 3 內(nèi)蒙古低碳發(fā)展研究院, 內(nèi)蒙古呼和浩特 010010)

      ?

      水氮用量對(duì)設(shè)施栽培蔬菜地土壤氨揮發(fā)損失的影響

      李銀坤1, 武雪萍2*, 武其甫3, 吳會(huì)軍2

      (1 北京農(nóng)業(yè)智能裝備技術(shù)研究中心, 北京 100097; 2 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,耕地培育技術(shù)國家工程實(shí)驗(yàn)室, 北京 100081; 3 內(nèi)蒙古低碳發(fā)展研究院, 內(nèi)蒙古呼和浩特 010010)

      灌溉; 氮肥; 菜地; 銨態(tài)氮濃度; 氨揮發(fā)速率; 產(chǎn)量

      長(zhǎng)期以來對(duì)土壤氨揮發(fā)的研究多集中于大田[11-12],設(shè)施菜地土壤氨揮發(fā)的報(bào)道較少。我國設(shè)施蔬菜種植模式中,黃瓜和番茄輪作最為普遍,但目前尚缺少不同水肥條件下氨揮發(fā)周年動(dòng)態(tài)變化方面的研究,而且對(duì)黃瓜和番茄輪作周期內(nèi)氨揮發(fā)損失量及其影響因子尚不明確。本研究以華北平原設(shè)施黃瓜-番茄菜地為研究對(duì)象,通過設(shè)置不同水氮條件,探討黃瓜-番茄種植體系內(nèi)的氨揮發(fā)特征及其影響因素,以揭示影響設(shè)施菜地土壤氨揮發(fā)的重要因子,為建立合理的灌溉和施肥制度提供科學(xué)依據(jù)。

      1 材料與方法

      1.1試驗(yàn)材料

      試驗(yàn)點(diǎn)位于河北省辛集市馬莊科園農(nóng)場(chǎng)內(nèi)(37°78′N,115°30′E)。該區(qū)域?qū)倥瘻貛О霛駶?rùn)大陸性氣候,年均氣溫12.5℃,年日照時(shí)數(shù)2629.5 h,全年無霜期190 d。試驗(yàn)用日光溫室長(zhǎng)39 m、 寬7.5 m,供試土壤為壤質(zhì)潮土。定位試驗(yàn)開始于2008年2月,種植制度為黃瓜-番茄輪作,試驗(yàn)開始前0—20 cm土層土壤有機(jī)質(zhì)含量15.4 g/kg,全氮1.55 g/kg,速效磷32.4 mg/kg,速效鉀165.3 mg/kg,土壤容重1.35 g/cm3,田間持水率23.7%。

      1.2試驗(yàn)設(shè)計(jì)

      1.3測(cè)定項(xiàng)目與方法

      氨揮發(fā)由通氣法測(cè)定[13]。首先用磷酸甘油溶液均勻浸泡海綿(直徑16 cm,厚度2 cm),然后將其橫置于聚氯乙烯硬質(zhì)塑料管中(直徑15 cm,高10 cm)。下層海綿距管底部5 cm,用于吸收來自土壤中的揮發(fā)氨; 上層海綿與管頂部齊平,用于吸收空氣中的氨,以避免污染下層海綿。雙層海綿布置好后將塑料管插入土壤(約2 cm)。取樣時(shí),將下層海綿取出后放入自封袋,迅速帶回實(shí)驗(yàn)室用濃度為1 mol/L的氯化鉀溶液振蕩浸提,浸提液經(jīng)濾紙過濾后由流動(dòng)分析儀測(cè)定銨態(tài)氮含量。每試驗(yàn)小區(qū)布置2個(gè)氨揮發(fā)取樣裝置,一般在施肥后的1、 3、 5、 7、 10 d取樣,若2次施肥間隔較長(zhǎng),則適當(dāng)增加取樣次數(shù)。

      土壤氨揮發(fā)速率(F)=M/(A×D)×10-2

      式中, F為土壤氨揮發(fā)速率[kg/(hm2·d)]; M為取樣裝置單位時(shí)間內(nèi)吸收的氨量(NH3-N mg); A為氨揮發(fā)取樣裝置的橫截面積(m2); D為每次連續(xù)取樣的時(shí)間(d)。

      式中,Mt為土壤氨揮發(fā)量(kg/hm2);i為采樣次數(shù);t為采樣時(shí)間,即定植后天數(shù)(d)。

      氨揮發(fā)損失率(%)=(施氮區(qū)氨揮發(fā)量-不施氮區(qū)氨揮發(fā)量)/施氮量×100。

      在氨揮發(fā)取樣的當(dāng)天,另在氨揮發(fā)取樣裝置周圍10 cm處采集0—10 cm土樣,測(cè)定土壤含水量及其銨態(tài)氮含量。其中土壤孔隙含水量(WFPS,%)=土壤容重×土壤含水量/(1-土壤容重/2.65)

      黃瓜(番茄)以小區(qū)為單位進(jìn)行采摘,由電子天平稱重,并在植株拉秧后統(tǒng)計(jì)總產(chǎn)量。計(jì)算氮肥農(nóng)學(xué)效率和灌溉水利用效率。

      氮肥農(nóng)學(xué)效率(kg/kg)=(施氮區(qū)黃瓜產(chǎn)量-不施氮區(qū)黃瓜產(chǎn)量)/施氮量。

      灌溉水利用效率(kg/m3)=產(chǎn)量/灌水量。

      統(tǒng)計(jì)分析軟件用SAS,最小顯著差異法(Duncan)進(jìn)行多重比較,Pearson法進(jìn)行相關(guān)性分析。

      表1 設(shè)施黃瓜-番茄種植體系中灌水及氮用量

      2 結(jié)果與分析

      2.1表層土壤銨態(tài)氮?jiǎng)討B(tài)變化

      2.2土壤氨揮發(fā)速率的動(dòng)態(tài)變化

      圖1 設(shè)施黃瓜-番茄體系內(nèi)0—10 cm土壤銨態(tài)氮濃度動(dòng)態(tài)變化Fig.1 Changes of soil -N concentration (0-10 cm) in the cucumber-tomato rotation system

      圖2 黃瓜-番茄生長(zhǎng)季內(nèi)土壤氨揮發(fā)動(dòng)態(tài)變化Fig. 2 Dynamics of soil ammonia volatilization during the cucumber-tomato growing seasons[注(Note): 箭頭表示追肥日期 Arrows indicate the dates of fertilization.]

      2.3土壤氨揮發(fā)損失量

      表2 黃瓜-番茄種植體系內(nèi)土壤氨揮發(fā)損失量

      注(Note): 同列數(shù)據(jù)后不同字母表示差異達(dá)5%顯著水平 Values followed by different letters in the same column are significantly different at the 5% level.

      2.4表層土壤銨態(tài)氮含量與土壤氨揮發(fā)速率關(guān)系

      統(tǒng)計(jì)分析表明,各處理土壤氨揮發(fā)速率與表層(0—10 cm)土壤銨態(tài)氮濃度均呈正相關(guān)關(guān)系,除不施氮處理W1N0和W2N0外,均達(dá)顯著或極顯著相關(guān)(圖3)。可見,土壤銨態(tài)氮濃度是設(shè)施菜地土壤氨揮發(fā)的重要影響因子。

      2.5黃瓜-番茄的氮肥和灌溉水利用效率

      3 討論

      3.1施氮量對(duì)設(shè)施菜地土壤氨揮發(fā)的影響

      圖3 土壤氨揮發(fā)速率與0—10 cm土壤銨態(tài)氮濃度的關(guān)系Fig. 3 Corelations between the ammonia volatilization rate and the 0-10 cm soil -N concentration

      處理Treatment產(chǎn)量(×104kg/hm2)Yield黃瓜Cucumber番茄Tomato全年All-year氮肥農(nóng)學(xué)效率(kg/kg)Nitrogenagronomicefficiency黃瓜Cucumber番茄Tomato全年All-year灌溉水農(nóng)學(xué)效率(kg/m3)Irrigationwateragronomicefficiency黃瓜Cucumber番茄Tomato全年All-yearW1N013.0d12.6ab25.6d17.4d60.9b26.9eW1N120.0a13.4a33.4a77.1a11.7a49.1a26.7bc64.7b35.0cW1N218.2b12.7ab30.9b43.3b0.82c25.1b24.4c61.3b32.4dW2N015.1c12.7ab27.8c29.2b82.8a41.4bW2N116.9b13.1a30.0b19.6c6.49b14.0c32.6a85.6a44.7aW2N216.9b12.1b29.0bc14.3c0d5.69d32.5a79.3a43.2ab

      注(Note): 同列數(shù)據(jù)后不同字母表示差異達(dá)5%顯著水平 Values followed by different letters in the same column are significantly different at the 5% level.

      3.2灌水對(duì)設(shè)施菜地土壤氨揮發(fā)的影響

      3.3其他環(huán)境因子對(duì)設(shè)施菜地土壤氨揮發(fā)的影響

      其他環(huán)境因子如氣溫、 地溫以及光照條件等均影響土壤的氨揮發(fā)[8,24]。由于本試驗(yàn)是在同一個(gè)溫室內(nèi)開展的定位研究,各處理的氣象條件差異很小,這種差異對(duì)土壤氨揮發(fā)的影響可忽略不計(jì)。但氣象因子本身對(duì)土壤氨揮發(fā)的影響具有一定的規(guī)律性,其主要是通過影響土壤中的銨態(tài)氮濃度間接影響土壤的氨揮發(fā)[8,24]。對(duì)于設(shè)施菜地來說,由于灌水和施肥量大,且施用頻繁,氣象因子對(duì)土壤氨揮發(fā)的影響往往被氮肥和灌水的影響所掩蔽。

      4 結(jié)論

      3)本試驗(yàn)條件下,節(jié)水30%、 減量施氮25%的水氮組合(W2N1)具有較佳的經(jīng)濟(jì)效益與環(huán)境效應(yīng)。

      [1]FAO. Statistical databases. Food and Agriculture Organization (FAO) of the United Nations[M/OL]. http://faostat3. fao. org., 2013.

      [2]巨曉棠, 谷保靜. 我國農(nóng)田氮肥施用現(xiàn)狀、 問題及趨勢(shì)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(4): 783-795.

      Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795.

      [3]劉蘋, 李彥, 江麗華, 等. 施肥對(duì)蔬菜產(chǎn)量的影響—以壽光市設(shè)施蔬菜為例[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(6): 1752-1758.

      Liu P, Li Y, Jiang L H,etal. Effects of fertilizer application on greenhouse vegetable yield: A case study of Shouguang City[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1752-1758.

      [4]Min J, Zhao X, Shi W M,etal. Nitrogen balance and loss in a greenhouse vegetable system in Southeastern China[J]. Pedosphere, 2011, 21(4): 464-472.

      [5]Fan Z B, Lin S, Zhang X M,etal. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production[J]. Agricultural Water Management, 2014, 144: 11-19.

      [6]朱兆良.中國土壤氮素研究[J]. 土壤學(xué)報(bào), 2008, 45(5): 778-783.

      Zhu Z L. Research on soil nitrogen in China[J]. Acta Pedologica Scinica, 2008, 45(5): 778-783.

      [7]Matsushima M, Lim S S, Kwak J H,etal. Interactive effects of synthetic nitrogen fertilizer and composted manure on ammonia volatilization from soils[J]. Plant and Soil, 2009, 325(1/2): 187-196.

      [8]Gong W W, Zhang Y S, Huang X F,etal. High-resolution measurement of ammonia emissions from fertilization of vegetable and rice crops in the Pearl River Delta Region, China[J]. Atmospheric Environment, 2013, 65: 1-10.

      [9]王書偉, 廖千家驊, 胡玉婷, 等. 我國 NH3-N排放量及空間分布變化初步研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2009, 28(3): 619-626.

      Wang S W, Liao Q J H, Hu Y T,etal. A preliminary inventory of NH3-N emission and its temporal and spatial distribution of China[J]. Journal of Agro-Environment Science, 2009, 28(3): 619-626.

      [10]Ni K, Pacholski A, Kage H. Ammonia volatilization after application of urea to winter wheat over 3 years affected by novel urease and nitrification inhibitors[J]. Agriculture, Ecosystems and Environment, 2014, 197: 184-194.

      [11]Huo Q, Cai X H, Kang L,etal. Estimating ammonia emissions from a winter wheat cropland in North China Plain with field experiments and inverse dispersion Modeling[J]. Atmospheric Environment, 2015, 104: 1-10.

      [12]Han K, Zhou C J, Wang L Q. Reducing ammonia volatilization from maize fields with separation of nitrogen fertilizer and water in an alternating furrow irrigation system[J]. Journal of Integrative Agriculture, 2014, 13(5): 1099-1112.

      [13]王朝輝, 劉學(xué)軍, 巨曉棠, 張福鎖. 田間土壤氨揮發(fā)的原位測(cè)定-通氣法[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2002, 8(2): 205-209.

      Wang Z H, Liu X J, Ju X T, Zhang F S. Field in situ determination of ammonia volatilization from soil: venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209.

      [14]張琳, 孫卓玲, 馬理, 等. 不同水氮條件下雙氰胺(DCD)對(duì)溫室黃瓜土壤氮素?fù)p失的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2015, 21(1): 128-137.

      Zhang L, Sun Z L, Ma L,etal. Effects of dicyandiamide on nitrogen loss from cucumber planting soil in intensive greenhouse under different irrigation and nitrogen conditions[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 128-137.

      [15]郝小雨, 高偉, 王玉軍, 等. 有機(jī)無機(jī)肥料配合施用對(duì)日光溫室土壤氨揮發(fā)的影響[J]. 中國農(nóng)業(yè)科學(xué), 2012, 45(21): 4403-4414.

      Hao X Y, Gao W, Wang Y J,etal. Effects of combined application of organic manure and chemical fertilizers on ammonia volatilization from greenhouse vegetable soil[J]. Scientia Agricultura Sinica, 2012, 45(21): 4403-4414.

      [16]李銀坤, 武雪萍, 梅旭榮, 等. 常規(guī)灌溉條件下施氮對(duì)溫室土壤氨揮發(fā)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(7): 23-30.

      Li Y K, Wu X P, Mei X R,etal. Effects of nitrogen application on ammonia volatilization in greenhouse soil under condition of conventional irrigation[J]. Transactions of the CSAE, 2011, 27(7): 23-30.

      [17]習(xí)斌, 張繼宗, 左強(qiáng), 等. 保護(hù)地菜田土壤氨揮發(fā)損失及影響因素研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(2): 327-333.

      Xi B, Zhang J Z, Zuo Q,etal. Study on the losing of ammonia volatilization and its influencing factors on the protected vegetable fields' soil[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 327-333.

      [18]Cantarella H, Mattos D, Quaggio J A,etal. Fruit yield of Valencia sweet orange fertilized with different N sources and the loss of applied N[J]. Nutrient Cycling in Agroecosystems, 2003, 67(3): 215-223.

      [19]葛順峰, 姜遠(yuǎn)茂, 魏紹沖, 房祥吉. 不同供氮水平下幼齡蘋果園氮素去向初探[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(4): 949-955.

      Ge S F, Jiang Y M, Wei S C, Fang X J. Nitrogen balance under different nitrogen application rates in young apple orchards[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 949-955.

      [20]翟學(xué)旭, 王振林, 戴忠民, 等. 灌溉與非灌溉條件下黃淮冬麥區(qū)不同追氮時(shí)期農(nóng)田土壤氨揮發(fā)損失研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(1): 54-64.

      Zhai X X, Wang Z L, Dai Z M,etal. Ammonia volatilization loss in Huang Huai winter wheat cultivation areas under irrigated and rainfed conditions[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 54-64.

      [21]Jantalia C P, Halvorson A D, Follett R F,etal. Nitrogen source effects on ammonia volatilization as measured with semi-static chamber[J]. Agronomy Journal, 2012, 104(6): 1595-1603.

      [22]Holcomb J C, Sullivan D M, Horneck D A, Clough G H. Effect of irrigation rate on ammonia volatilization[J]. Soil Science Society of America Journal, 2011, 75(6): 2341-2347.

      [23]高鵬程, 張一平. 氨揮發(fā)與土壤水分散失關(guān)系的研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2001, 29(6): 22-26.

      Gao P C, Zhang Y P. Research on relationship between volatilization of ammonia and evaporation of soil water[J]. Journal of Northwest A&F University (Natural Science Edition), 2001, 29(6): 22-26.

      [24]上官宇先, 師日鵬, 李娜, 等. 壟作覆膜條件下田間氨揮發(fā)及影響因素[J].環(huán)境科學(xué), 2012, 33(6) : 1987-1993.

      Shangguan Y X, Shi R P, Li N,etal. Factors influencing ammonia volatilization in a winter wheat field with plastic film mulched ridges and unmulched furrows[J]. Environmental Science, 2012, 33(6): 1987-1993.

      Effects of irrigation and nitrogen application on ammonia volatilization loss from vegetable fields under greenhouse cultivation

      LI Yin-kun1, WU Xue-ping2*, WU Qi-fu3, WU Hui-jun2

      (1BeijingResearchCenterofIntelligentEquipmentforAgriculture,Beijing100097,China; 2NationalEngineeringLaboratoryforImprovingQualityofArableLand/InstituteofAgriculturalResourceandRegionalPlanning,ChineseAcademyofAgricultureSciences,Beijing100081,China; 3InnerMongoliaLow-CarbonResearchInstitute,Hohhot010010,China)

      【Objectives】 Excessive nitrogen fertilization and irrigation are common phenomena in greenhouse cultivated vegetable production in China. Objectives of this study were to identify characteristics of soil ammonia volatilization under different irrigation and nitrogen conditions, and to investigate impacts of important factors on soil ammonia volatilization in a cucumber-tomato rotation system. 【Methods】 The study was carried out with two irrigation levels, traditional irrigation (W1) and reduced irrigation quantity (W2), and three nitrogen application rates, traditional nitrogen rate (N2), reduced by 25% from traditional nitrogen rate (N1) and no nitrogen application (N0). There were six treatments, W1N0, W1N1, W1N2, W2N0,W2N1 and W2N2. The venting method was used to investigate the dynamics of ammonia volatilization and the key impact factors related to soil ammonia volatilization in the vegetable fields in the North China Plain. 【Results】 The nitrogen rates have significant effect on the ammonium nitrogen contents of topsoil (0-10 cm depth) in the cucumber-tomato rotation system. Compared to the traditional nitrogen treatment (N2), the peak value of the ammonium nitrogen concentration is reduced by 25.1%-30.3% (P<0.05) in the reduced nitrogen treatment (N1) under the same irrigation condition. Reduction of the nitrogen rate significantly reduces the soil ammonia volatilization rate. Compared to the traditional nitrogen treatment (N2), the average rates of soil ammonia volatilization are reduced by 21.1%-22.8% (P<0.05) and 16.5%-17.9% (P<0.05) in the cucumber growing season and tomato growing season, respectively. The ammonia volatilization amount and loss ratio of the nitrogen fertilizer are 17.8-48.1 kg/hm2and 1.23%-1.44% in the cucumber-tomato rotation system, respectively. Compared to the N2 treatment, the ammonia volatilization amount and loss ratio of the nitrogen fertilizer of the N1 treatment are reduced by 19.3%-20.0% (P< 0.05) and 0.85-0.92 percentage point, respectively. There is a significantly positive correlation between the soil ammonia volatilization rate and 0-10 cm soil ammonium nitrogen concentration, which shows that the 0-10 cm soil ammonium nitrogen concentration is one of the important factors affecting soil ammonia volatilization. The soil ammonia volatilization rate and ammonia volatilization amount in the reduced irrigation treatment (W2) are higher than those in the traditional irrigation treatment (W1) (P>0.05). Appropriate reduction of the nitrogen fertilizer and irrigation application not only has high vegetable production, but also significantly increases the irrigation water and nitrogen use efficiencies. Compared to the N2 treatment, the nitrogen agronomic efficiency is increased by 95.4%-146.4% in the N1 treatment, and compared to the W1 treatment, the irrigation water agronomic efficiency of the W2 treatment is increased by 27.7%-54.0%. 【Results】 By taking the reasonable measure of water-saving and nitrogen application reduction, the objectives of reducing the ammonia volatilization, increasing the yield and improving the irrigation water and nitrogen use efficiencies can be achieved. In summary, the combination of water-saving irrigation by 30% and nitrogen fertilizer reduction by 25% (W2N1) can make a good economic benefit and environmental effect in this experiment.

      2015-05-08接受日期: 2015-06-13網(wǎng)絡(luò)出版日期: 2015-08-19

      國家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目 (2013AA102901); 北京市農(nóng)林科學(xué)院科技創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20140415); 公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201203077); 北京市農(nóng)林科學(xué)院青年基金(QNJJ201421); 北京市優(yōu)秀人才項(xiàng)目(2015000057592G267)資助。

      李銀坤(1982—), 男, 山東菏澤人, 博士, 主要從事水肥高效利用及水肥一體化技術(shù)研究。 E-mail: lykun1218@163.com

      E-mail: xpwu@caas.ac.cn

      S143.1; S155.4+1

      A

      1008-505X(2016)04-0949-09

      猜你喜歡
      銨態(tài)氮菜地黃瓜
      小白兔進(jìn)菜地
      菜地游樂園
      清新脆嫩的黃瓜
      中老年保健(2021年5期)2021-08-24 07:08:02
      菜地的周長(zhǎng)
      不同質(zhì)地土壤銨態(tài)氮吸附/解吸特征
      黃瓜留瓜要注意兩點(diǎn)
      不同鹽堿化土壤對(duì)NH+4吸附特性研究
      我喜歡黃瓜
      菜地里的狂歡
      摘黃瓜
      武城县| 拉孜县| 湟中县| 元阳县| 芒康县| 体育| 商水县| 山丹县| 建昌县| 永仁县| 伊川县| 阿拉尔市| 邵东县| 萍乡市| 中宁县| 黄陵县| 河南省| 秀山| 大新县| 南开区| 郎溪县| 舟曲县| 大足县| 马公市| 民乐县| 五河县| 治县。| 日喀则市| 阿图什市| 洛阳市| 东海县| 红安县| 平凉市| 尚义县| 仁化县| 绵阳市| 湘乡市| 泸溪县| 彭泽县| 龙州县| 天水市|