• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      利用課堂提問培養(yǎng)學生的數(shù)學創(chuàng)新能力

      2017-06-28 01:59高敬博
      神州·下旬刊 2017年4期
      關鍵詞:關鍵處長方形面積

      高敬博

      教師必須精心創(chuàng)設教學情境,有效地調(diào)動學生主動參與教學活動,使其學習的內(nèi)部動機從好奇逐步升華為興趣、志趣、理想以及自我價值的實現(xiàn)。教師就教學內(nèi)容設計出富有趣味性、探索性、適應性和開放性的情境性問題,并為學生提供適當?shù)闹笇?,通過精心設置支架,巧妙地將學習目標任務置于學生的最近發(fā)展區(qū)。讓學生產(chǎn)生認知困惑,引起反思,形成必要的認知沖突,從而促成對新知識意義的建構。因此,在創(chuàng)造性的數(shù)學教學中,師生雙方都應成為教學的主體。筆者在教學工作中體會到:課程改革后的數(shù)學課堂應創(chuàng)設富有探索性、挑戰(zhàn)性的問題,讓學生通過自主探索和合作交流,不僅能更好地激發(fā)學生的學習興趣,更重要的是培養(yǎng)學生的創(chuàng)新意識和創(chuàng)造能力。

      一、課堂提問的明確性

      提問是為了引導學生積極思維。提的問題只有明確具體,才能為學生指明思維的方向。如,有一位新教師教學“異分母分數(shù)加減法”,引入1/2+1/3后提問:“1/2與1/3這兩個分數(shù)有什么特點?”有的答:“都是真分數(shù)?!边€有的答:“分子都是1?!憋@然,這一提問不明確,學生的回答沒有達到教師的提問意圖。如果改問:“這兩個分數(shù)的分母相同嗎?分母不同的分數(shù)能不能直接相加?為什么?”這樣的提問既明確,又問在關鍵處,有助于學生理解為什么要通分的算理。

      二、課堂提問的思考性

      教師要在知識的關鍵處、理解的疑難處、思維的轉折處、規(guī)律的探求處設問。在知識的關鍵處提問,能突出重點,分散難點,幫助學生掃除學習障礙。在思維的轉折處提問,有利于促進知識的遷移,有利于建構和加深所學的新知。如,教“圓的面積”時,教師組織學生直觀操作,將圓剪開拼成一個近似長方形,并利用長方形的面積公式推導出圓的面積公式。這里知識的內(nèi)在聯(lián)系是拼成的近似長方形的面積與原來圓的面積有什么關系?拼成的近似長方形的長和寬是原來圓的什么?為了適時提出這兩個問題,教師先讓學生動手操作,將一個圓平均分成8份、16份,剪拼成一個近似長方形。教師提出:

      ①若把這個圓平均分成32份、64份……這樣拼出來的圖形怎么樣?

      ②這個近似長方形的長和寬就是圓的什么?

      ③那么怎樣通過長方形面積公式推導出圓的面積公式?學生很快推導出:長方形面積=長×寬圓的面積=半周長×半徑=(2πr/2)×r=πr[2]在規(guī)律的探求處設問,可促使學生在課堂中積極思考,讓學生通過自己的思維學習新知識,得到新規(guī)律,可以讓他們感受到學習的樂趣。

      三、課堂提問的靈活性

      教學過程是一個動態(tài)的變化過程,這就要求教師的提問要靈活應變。如,一位教師教了整數(shù)減帶分數(shù)后,要求學生做5-(2+1/4)等于多少。有一個學生只把整數(shù)部分相減,得出3+1/4;另一個學生從被減數(shù)中拿出1化成4/4,相減時5又忘了減少1,得3+3/4。在分析這兩個學生做錯的原因并訂正后,教師沒有到此為止,而是提出:如果要使答案是3+1/4或3+3/4,那么這個題目應如何改動?這一問,立即引起全班學生的興趣,大家紛紛討論。這一問題恰恰把整數(shù)減帶分數(shù)中容易混淆或產(chǎn)生錯誤的地方暴露出來,這種問題來自學生,又由學生自己來解決的方式,不僅對發(fā)展學生的思維能力大有裨益,而且能調(diào)動學生的學習積極性。

      四、課堂提問的多向性

      首先要讓學生的思維多向。教師所提的問題的答案,或解決問題的思路與方法,不能是唯一的,學生回答這類問題時,需要綜合運用各種知識,學生的思維要躍出線性思維的軌道,向平面型、立體型思維拓展。因此,它對于學生形成良好的認知結構,發(fā)展思維的靈活性、創(chuàng)造性都是十分有益的。其次要注意信息傳遞的多向性。鼓勵學生質疑問難,改變信息單向傳遞的被動局面,使課堂呈現(xiàn)教師問學生答、學生問教師答、學生問學生答的生動活潑局面。

      五、課堂提問的邏輯性

      教師所設計的問題,必須符合小學生思維的形式與規(guī)律。設計出一系列由淺入深的問題,問題之間有著嚴密的邏輯性,然后一環(huán)緊扣一環(huán)地設問,從而使學生的認識逐步深化。如教“三角形的面積計算”時,可以這樣設問:

      ①兩個完全一樣的三角形可以拼成一個已學過的什么圖形?

      ②拼成的圖形的底是原來三角形的哪一條邊?

      ③拼成的圖形的高是原來三角形的什么?

      ④三角形的面積是拼成的圖形面積的多少?

      ⑤怎樣來表示三角形面積的計算公式?

      ⑥為什么求三角形面積要用底乘以高再除以2?這樣的提問既有邏輯性又有啟發(fā)性,不僅使學生較好地理解三角形的面積計算公式,而且能發(fā)展學生的思維能力。

      六、課堂提問的巧妙性

      當學生的情感被激發(fā)起來時,教師要善于激疑促思,或于“無疑”處設疑,或在內(nèi)容深處、關鍵處、結合部設疑,使課堂教學時有波瀾。如,有位老師上的“三角形面積的計算”,這節(jié)課時間過半時,學生基本上掌握了三角形面積計算公式,并能運用這個公式求一般三角形面積。正當學生充滿成功的喜悅時,老師拋出了一道“奇特”的題目:計算右圖三角形的面積。并有意采用競賽的形式把課堂氣氛搞得很熱烈,學生個個躍躍欲試,搶著回答。結果,幾乎全班學生的答案都是4×6÷2=12(平方米)。正當學生又一次為自己的“勝利”而感到喜悅時,老師詼諧地說:“你們都上當啦!”一語出口,尤如在已有漣漪的湖中投入一塊巨石,學生情緒為之亢奮。這時老師才在學生思維異?;钴S的情況下揭示其中的奧秘,從而收到了良好的教學效果。

      總之,教學思想主導教學活動,一切教學活動的歸宿終將回到學生身上。學生需要發(fā)展的人,教師要以人為本,正視學生的知識基礎、情感個性的特點與差異,尊重學生、信任學生,努力營造民主、平等、和諧、寬容的教學氛圍。把學生的人文性充分體現(xiàn)在數(shù)學教學過程中,無論是教學目標的定位、教材處理的方式,還是教學過程的運作等,要強調(diào)人的主體作用,既讓學生各抒已見,又要收得攏,順勢誘導,從而拓寬教學進程中的人本空間,重視挖掘師生的集體智慧和力量。學生成為課堂上學習的主體,我們可以把問題讓學生提,疑點讓學生辯,結論讓學生得,教師充分放手激發(fā)學生學習的主動性和創(chuàng)造性,達到教學活動的開放搞活,學生素質的發(fā)展提高之目的。教學環(huán)境與學生學習有著必然的關系,只有在民主、平等、和諧、寬松的課堂氣氛下,學生的學習才會熱情高漲,參與課堂教學的積極性也會高。endprint

      猜你喜歡
      關鍵處長方形面積
      小長方形找朋友
      面積最少的國家
      善抓關鍵巧析文
      聚焦關鍵處,讓智慧“親臨”
      巧替換,妙解答
      文本關鍵處:閱讀教學的重點
      幾何入門階段做好“接枝”教學
      巧用面積法解幾何題
      尋找圖形中的比
      三種不規(guī)則面積的求法
      文山县| 久治县| 苍梧县| 沾化县| 驻马店市| 阜宁县| 台东县| 理塘县| 西安市| 霸州市| 丰城市| 内黄县| 宣武区| 巴林左旗| 郑州市| 绵竹市| 广汉市| 游戏| 科技| 凤台县| 社会| 玉田县| 屏山县| 绥德县| 东光县| 托克逊县| 大悟县| 吉安县| 郑州市| 咸宁市| 刚察县| 丹江口市| 城口县| 铜梁县| 江都市| 襄城县| 许昌县| 西青区| 民县| 兴隆县| 微山县|