• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      肉毒毒素抗癲癇作用的研究進(jìn)展

      2018-01-17 05:32:12連亞軍武守義
      關(guān)鍵詞:興奮性抗癲癇神經(jīng)遞質(zhì)

      黃 智 連亞軍 武守義

      鄭州大學(xué)第一附屬醫(yī)院神經(jīng)內(nèi)科,河南 鄭州 450052

      肉毒毒素(botulinum neuro toxin,BoNT)是一種由厭氧梭狀芽孢桿菌產(chǎn)生的神經(jīng)毒素蛋白[1],可阻礙周?chē)窠?jīng)元軸突末梢釋放乙酰膽堿,引起肌肉弛緩性麻痹、腺體分泌減少等,被廣泛應(yīng)用于醫(yī)學(xué)、美容等行業(yè)[2]。根據(jù)抗原學(xué)分類,BoNT可分為8類,依次命名為BoNT/A-H,并可依據(jù)氨基酸序列進(jìn)一步區(qū)分亞型[3],如A型肉毒毒素(botulinum toxin A,BoNT/A)可分為7種亞型(A1-A7),各亞型具有不同的酶活性及毒理學(xué)特征[4-6]。

      厭氧梭狀芽孢桿菌合成并釋放無(wú)活性的BoNT前體,BoNT由1條分子質(zhì)量約150 kD的蛋白鏈構(gòu)成,可被自身的蛋白水解酶降解、激活,活化后的BoNT由1條約100 kD的重鏈和1條約為50 kD的輕鏈構(gòu)成,并依靠一個(gè)二硫鍵相連接。重鏈的C末端特異性識(shí)別神經(jīng)元表面神經(jīng)節(jié)苷脂、突觸囊泡蛋白2、成纖維細(xì)胞生長(zhǎng)因子受體[7-8],介導(dǎo)輕鏈以囊泡的形式進(jìn)入胞質(zhì),并參與囊泡的酸化,輕鏈的N末端允許其進(jìn)入胞質(zhì)。輕鏈作為BoNT的活性部分,具有Zn2+依賴的蛋白水解酶活性,可降解1種或2種構(gòu)成可溶性N-乙基馬來(lái)酰亞胺敏感性因子附著型的蛋白受體(soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors,SNAREs)復(fù)合體的蛋白質(zhì),抑制神經(jīng)遞質(zhì)的釋放。

      在遞質(zhì)囊泡運(yùn)輸過(guò)程中,SNAREs起到至關(guān)重要的作用[9]。根據(jù)其分布及功能,SNAREs分為靶膜上的SNAREs(target membrane SNAREs,t-SNAREs)和囊泡上的SNAREs(vesicle membrane SNAREs,v-SNAREs),其中t-SNAREs包括突觸融合蛋白(syntaxin)、突觸囊泡相關(guān)蛋白25(SNAP-25),v-SNAREs包括突觸小泡締合性膜蛋白(synaptic vesicle-associated membrane protein,VAMP / synaptobrevin)及其相關(guān)蛋白。Synaptobrevin、syntaxin 和SNAP-25聚合成SNAREs復(fù)合體,介導(dǎo)囊泡膜與細(xì)胞膜結(jié)合并形成融合孔,融合孔擴(kuò)張,釋放神經(jīng)遞質(zhì)[10]。BoNT降解囊泡運(yùn)輸過(guò)程中相關(guān)的SNAPEs蛋白,阻礙神經(jīng)遞質(zhì)的釋放,如BoNT/A、BoNT/C、和BoNT/E水解SNAP-25,BoNT/B、BoNT/D、BoNT/F,和BoNT/G水解synaptobrevin,BoNT/C水解SNAP-25,及syntaxin[11],而B(niǎo)oNT/H于2013年被發(fā)現(xiàn),因其潛在的劇毒性,相關(guān)的研究報(bào)道較少[12]。

      在周?chē)窠?jīng)系統(tǒng)中,BoNT主要抑制神經(jīng)肌肉接頭、自主神經(jīng)末梢乙酰膽堿遞質(zhì)釋放,作用機(jī)制較為單一,而對(duì)于具有多種神經(jīng)遞質(zhì)的中樞神經(jīng)系統(tǒng),其作用范圍更加廣泛、復(fù)雜,現(xiàn)將其對(duì)在中樞神經(jīng)元的影響概括如下。

      1 抑制神經(jīng)遞質(zhì)釋放

      既往普遍認(rèn)為BoNT作用于膽堿能運(yùn)動(dòng)神經(jīng)元、自主神經(jīng)系統(tǒng)神經(jīng)元,但實(shí)驗(yàn)表明BoNT可進(jìn)入多種神經(jīng)元,并阻滯非膽堿能神經(jīng)元突觸的神經(jīng)遞質(zhì)釋放。眾多神經(jīng)元體外培養(yǎng)證實(shí),BoNT/A可抑制谷氨酸、L-天冬氨酸、5-羥色胺、多巴胺、去甲腎上腺、γ-氨基丁酸、腦啡肽、甘氨酸、P物質(zhì)、ATP、降鈣素相關(guān)基因肽[13-19]。

      2 抑制神經(jīng)元興奮性

      BoNT抑制多種神經(jīng)遞質(zhì)的釋放,包括興奮性神經(jīng)遞質(zhì)(谷氨酸、L-天冬氨酸)和抑制性神經(jīng)遞質(zhì)(γ-氨基丁酸),對(duì)神經(jīng)元的興奮性具有一定的影響。Bigalke 等報(bào)道BoNT/A可抑制小鼠脊神經(jīng)元的興奮性和抑制性突觸后電位[20],隨后證實(shí)BONA/A、BoNT/C、BONE/E抑制自發(fā)性、誘發(fā)的興奮性突觸后電位[21]。研究[18]表明,相較于抑制性神經(jīng)遞質(zhì),BoNT對(duì)興奮性神經(jīng)遞質(zhì)的抑制作用更顯著 。在大鼠海馬組織中,與谷氨酸能神經(jīng)元相比,γ-氨基丁酸能神經(jīng)元內(nèi)SNAP-25含量較低,對(duì)BoNT-A、BoNT-E的抵抗作用較強(qiáng),大劑量的BoNT-A才產(chǎn)生抑制作用[22]。

      3 抑制Na+通道

      SHIN等[23]發(fā)現(xiàn),BoNT/A抑制河豚毒敏感、不敏感性Na+通道,呈劑量依賴性,且對(duì)中樞性神經(jīng)元的抑制作用強(qiáng)于周?chē)窠?jīng)元細(xì)胞。A2型較A1型抑制作用更強(qiáng),對(duì)Na+通道的抑制作用強(qiáng)于抗癲癇藥物(苯妥英、拉莫三嗪),證實(shí)BoNT/A2 可影響海馬CA1區(qū)神經(jīng)元Na+電流波幅,表現(xiàn)為前期波幅短暫增加,隨后出現(xiàn)持續(xù)8~10 min的波幅降低。作者認(rèn)為前期短暫的波幅增加同BoNT重鏈介導(dǎo)的輕鏈穿過(guò)細(xì)胞膜相關(guān),進(jìn)而推測(cè)BoNT結(jié)合鈉離子通道的位點(diǎn)位于細(xì)胞膜內(nèi)[23]。

      4 逆軸突轉(zhuǎn)運(yùn)及轉(zhuǎn)胞吐作用

      通常認(rèn)為BoNT作用于局部,而忽略了其可擴(kuò)散至遠(yuǎn)端組織。目前研究[24]表明,BoNT具有逆軸突轉(zhuǎn)運(yùn)及轉(zhuǎn)胞吐作用,可逆行性傳遞至中樞神經(jīng)系統(tǒng)。因BoNT/A特異性切割SNAP-25,可將切割后的cSNAP-25(cleaved SNAP-25,cSNAP-25)作為BoNT的標(biāo)志物。ANTONUCCI等[24]在大鼠一側(cè)的海馬區(qū)注射BoNT/A,可在同側(cè)內(nèi)嗅皮質(zhì)、對(duì)側(cè)海馬區(qū)探及cSNAP-25,并抑制對(duì)側(cè)海馬的活動(dòng)。在視區(qū)頂蓋、晶須處注射BoNT/A,在視網(wǎng)膜突觸末端、面神經(jīng)核檢測(cè)到cSNAP-25,后續(xù)研究在視網(wǎng)膜雙極細(xì)胞、感光細(xì)胞內(nèi)發(fā)現(xiàn)突觸囊泡數(shù)目異常增多,證實(shí)了BoNT可經(jīng)轉(zhuǎn)胞吐逆行并發(fā)揮作用[25]。Matak等[26]在大鼠坐骨神經(jīng)內(nèi)注射BoNT/A,在脊髓前角膽堿能神經(jīng)元內(nèi)探及cSNAP-25,且該傳導(dǎo)可被秋水仙素抑制。一項(xiàng)在對(duì)腦卒中患者外周肌內(nèi)注射BoNT研究中發(fā)現(xiàn)BoNT/A可通過(guò)軸索運(yùn)輸至脊髓,抑制脊髓回返旁路與任肖細(xì)胞間乙酰膽堿釋放,降低脊髓回返抑制途徑[27]。BoNT逆軸突轉(zhuǎn)運(yùn)及跨突觸傳遞的機(jī)制尚未明確,具體過(guò)程還需進(jìn)一步研究。

      5 可逆性損害認(rèn)知、記憶等高級(jí)功能

      在動(dòng)物腦組織內(nèi)給予BoNT,可抑制5-羥色胺、多巴胺遞質(zhì)的釋放,與離體神經(jīng)元培養(yǎng)結(jié)果相符[28-29]。在成年大鼠內(nèi)嗅區(qū)皮質(zhì)注射BoNT/B,可出現(xiàn)學(xué)習(xí)和記憶功能損害[30],另一項(xiàng)研究顯示,在小鼠腦室內(nèi)注射BoNT/A、BoNT/B,小鼠出現(xiàn)一系列癥狀,如立毛、體質(zhì)量降低、體溫下降、眼瞼閉合、反射消失、呼吸困難甚至死亡[31],而采用亞致死劑量,小鼠出現(xiàn)辨別新事物等行為障礙[32]。COSTANTIN等[33]實(shí)驗(yàn)表明,該認(rèn)知功能損害具有可逆性,將BoNT/B注射至海馬區(qū)域,大鼠出現(xiàn)了為期5周的可逆性的空間學(xué)習(xí)、記憶功能損,且持續(xù)時(shí)間與BoNT/B代謝的時(shí)間相符。盡管該研究表明BoNT對(duì)大鼠的學(xué)習(xí)、記憶功能可隨BoNT的降解而恢復(fù),但尚缺乏長(zhǎng)期用藥的研究及對(duì)大鼠行為學(xué)影響的全面評(píng)估,及對(duì)中樞不同神經(jīng)核團(tuán)的影響。

      癲癇是多種原因引起的腦部神經(jīng)元高度異常同步化放電所致的臨床綜合征,具有持續(xù)存在的能產(chǎn)生癲癇發(fā)作的腦部持久性改變[34]。癲癇的發(fā)病機(jī)制復(fù)雜,目前認(rèn)為是中樞神經(jīng)系統(tǒng)的興奮性與抑制性失衡所致,與興奮性、抑制性神經(jīng)遞質(zhì)、離子通道、神經(jīng)膠質(zhì)細(xì)胞、遺傳、炎癥、免疫等有關(guān)[35]。上述實(shí)驗(yàn)證實(shí)BoNT可阻礙多種神經(jīng)遞質(zhì)的釋放,對(duì)興奮性神經(jīng)遞質(zhì)抑制作用較強(qiáng),為治療癲癇提供了理論依據(jù)。

      COSTANTIN[33]于2005年報(bào)道在大鼠單側(cè)海馬預(yù)注射BoNT/E,可抑制Ca2+依賴性鉀通道誘發(fā)的谷氨酸釋放、海馬錐體細(xì)胞的尖波電活動(dòng),顯著抑制海人酸誘發(fā)的局灶性及全面性癲癇發(fā)作,增加電刺激誘發(fā)癲癇發(fā)作的閾值,延遲癲癇的發(fā)生,減少神經(jīng)元凋亡。在海馬組織中,cSNAP-25可存在3周以上,注射后1周行水迷宮訓(xùn)練,BoNT組出現(xiàn)學(xué)習(xí)記憶障礙;而cSNAP-25經(jīng)過(guò)5周后不能檢測(cè)到,此時(shí)BoNT組水迷宮測(cè)試與空白組無(wú)明顯差異,證實(shí)了BoNT/E可抑制癲癇發(fā)作,對(duì)認(rèn)知功能的損害具有可逆性,與經(jīng)典抗癲癇藥物苯妥英鈉對(duì)照中,進(jìn)一步證實(shí)BoNT/E更為有效。

      ANTONUCCI等[36]進(jìn)一步研究了BoNT/E對(duì)于慢性癲癇模型的影響,在小鼠海馬注射海人酸誘發(fā)癲癇持續(xù)狀態(tài)3 h后給予海馬區(qū)注射BoNT/E,可延長(zhǎng)慢性癲癇的潛伏期,但治療組和對(duì)照組均出現(xiàn)慢性癲癇,每日的發(fā)作次數(shù)及時(shí)間無(wú)差異。在海人酸注射側(cè)海馬CA1區(qū)神經(jīng)的元喪失及齒狀回細(xì)胞分散程度降低[37]。該試驗(yàn)揭示了BoNT/E在癲癇形成中的保護(hù)性作用,但對(duì)慢性癲癇的產(chǎn)生無(wú)明顯影響。而另一項(xiàng)研究選取海人酸注射3周后的慢性癲癇模型,給予海馬區(qū)注射同等計(jì)量的BoNT/E,發(fā)現(xiàn)可降低大鼠每日癲癇的發(fā)生次數(shù)及持續(xù)時(shí)間。

      BoNT/A、BoNT/B同樣具有抗癲癇作用,在杏仁核點(diǎn)燃模型中,二者均增加電刺激的閾值,抑制谷氨酸釋放,呈現(xiàn)劑量、時(shí)間依賴性,其中BoNT/B可持續(xù)50 d,較BoNT/E明顯延長(zhǎng)[38]。在對(duì)于 BoNT/A的不同亞型研究中,在杏仁核點(diǎn)燃模型中海馬注射等劑量的A1、A2型BoNT,并統(tǒng)計(jì)術(shù)后電刺激的閾值及癲癇發(fā)作狀態(tài),發(fā)現(xiàn)BoNT/A2可提高電刺激閾值,降低癇性發(fā)作,而B(niǎo)oNT/A1組較空白組無(wú)明顯差異[39],可能因A1型擴(kuò)散速度較A2型快,A1型擴(kuò)散范圍較廣,局部不能形成有效濃度,不能抑制局部電刺激誘發(fā)的癲癇發(fā)作。

      以上研究均采用顱內(nèi)海馬區(qū)局部注射,操作具有創(chuàng)傷性及感染風(fēng)險(xiǎn),在實(shí)際操作中具有一定的難度,不利于應(yīng)用到臨床實(shí)踐中,應(yīng)進(jìn)一步探究顱外無(wú)創(chuàng)給藥途徑。近年來(lái)研究發(fā)現(xiàn),經(jīng)鼻腔給藥可經(jīng)嗅神經(jīng)、三叉神經(jīng)通路傳遞至中樞神經(jīng)系統(tǒng),并具有繞過(guò)血腦屏障、生物利用度高、無(wú)肝臟首過(guò)效應(yīng)等特點(diǎn)[40],被用于研究帕金森病、腦缺血、阿爾茨海默病等中樞神經(jīng)系統(tǒng)疾病的治療[41-42]。嗅神經(jīng)可投射至腦的不同區(qū)域,如梨狀皮質(zhì)、杏仁核、下丘腦等[43],目前實(shí)驗(yàn)證實(shí)鼻腔給予miR-146a mimics可延遲氯化鋰-匹魯卡品癲癇模型的癲癇發(fā)作[44]。因BoNT的逆神經(jīng)轉(zhuǎn)運(yùn)、轉(zhuǎn)胞吐作用,利用嗅神經(jīng)傳導(dǎo)通路,可探究鼻腔內(nèi)給藥對(duì)于癲癇發(fā)作的影響。

      后續(xù)可進(jìn)一步利用BoNT不同的類型的酶活性及毒理學(xué)特征,如BoNT/A半衰期時(shí)間長(zhǎng),可能作為潛在的長(zhǎng)效抗癲癇藥物,避免常規(guī)抗癲癇藥物需長(zhǎng)期、規(guī)律服用的弊端;BoNT/E作用時(shí)間短暫,可應(yīng)用于癲癇外科,對(duì)不能明確的手術(shù)切除部位暫行局部注射,有助于進(jìn)一步精確定位。綜上,目前研究表明,BoNT可抑制神經(jīng)元興奮性,減少癲癇的急性期發(fā)作及慢性自發(fā)癲癇發(fā)作,降低神經(jīng)元損傷、腦部異常放電,為癲癇的治療提供了新的途徑,但目前尚處于實(shí)驗(yàn)階段,還需進(jìn)一步探索。

      [1] MONTECUCCO C,MOLGO J.Botulinal neurotoxins:revival of an old killer[J].Curr Opin Pharmacol,2005,5(3):274-9.

      [2] MONHEIT G D,PICKETT A.AbobotulinumtoxinA:A 25-Year History[J].Aesthet Surg J,2017,37(suppl_1):S4-S11.

      [3] MAZZOCCHIO R,CALEO M.More than at the neuromuscular synapse:actions of botulinum neurotoxin A in the central nervous system[J].Neuroscientist,2015,21(1):44-61.

      [4] AKAIKE N,SHIN M C,WAKITA M,et al.Transsynaptic inhibition of spinal transmission by A2 botulinum toxin[J].J Physiol,2013,591(4):1 031-1 043.

      [5] WHITEMARSH R C,TEPP W H,BRADSHAW M,et al.Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice,in neuronal cell cultures,and in vitro[J].Infect Immun,2013,81(10):3 894-3 902.

      [6] PELLETT S,TEPP W H,WHITEMARSH R C,et al.In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5[J].Toxicon,2015,107(Pt A):37-42.

      [7] JACKY B P,GARAY P E,DUPUY J,et al.Identifica-tion of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A)[J].PLoS Pathog,2013,9(5):e100 336 9.

      [8] KUMAR R,DHALIWAL H P,KUKREJA R V,et al.The Botuli-num Toxin as a Therapeutic Agent:Molecu-lar Structure and Mechanism of Action in Motor and Sensory Systems[J].Semin Neurol,2016,36(1):10-9.

      [9] BARRECHEGUREN P J,ROS O,COTRUFO T,et al.SNARE proteins play a role in motor axon guidance in vertebrates and invertebrates[J].Dev Neurobiol,2017,77(8):963-974.

      [10] SCHIAVO G,MATTEOLI M,MONTECUCCO C.Neurotoxins affecting neuroexocytosis[J].Physiol Rev,2000,80(2):717-766.

      [11] BARR J R,MOURA H,BOYER A E,et al.Botulinum neurotoxin detection and differentiation by mass spectrome-try[J].Emerg Infect Dis,2005,11(10):1 578-1 583.

      [12] DOVER N,BARASH J R,HILL K K,et al.Molecular characterization of a novel botulinum neurotoxin type H gene[J].J Infect Dis,2014,209(2):192-202.

      [13] DURHAM P L,CADY R,CADY R.Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A:implications for migraine therapy[J].Headache,2004,44(1):35-42.

      [14] MCMAHON H T,F(xiàn)ORAN P,DOLLY J O,et al.Tetanus toxin and botulinum toxins type A and B inhibit glutamate,gamma-aminobutyric acid,aspartate,and met-enkep-halin release from synaptosomes.Clues to the locus of action[J].J Biol Chem,1992,267(30):21 338-21 343.

      [15] NAKOV R,HABERMANN E,HERTTING G,et al.Effects of botulinum A toxin on presynaptic modulation of evoked transmitter release[J].Eur J Pharmacol,1989,164(1):45-53.

      [16] MORRIS J L,JOBLING P,GIBBINS I L.Botulinum neuroto-xin A attenuates release of norepinephrine but not NPY from vasoconstrictor neurons[J].Am J Physiol Heart Circ Physiol,2002,283(6):H2 627-2 635.

      [17] THYSSEN A,HIRNET D,WOLBURG H,et al.Ecto-pic vesicu-lar neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling[J].Proc Natl Acad Sci U S A,2010,107(34):15 258-15 263.

      [18] VERDERIO C,GRUMELLI C,RAITERI L,et al.Traffic of botulinum toxins A and E in excitatory and inhibitory neurons[J].Traffic,2007,8(2):142-153.

      [19] CAVALLERO A,MARTE A,F(xiàn)EDELE E.L-aspartate as an amino acid neurotransmitter:mechanisms of the depolarization-induced release from cerebrocortical synaptosomes[J].J Neurochem,2009,110(3):924-934.

      [20] YU A C,CHAN P H,F(xiàn)ISHMAN R A.Effects of arachido-nic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons[J].J Neurochem,1986,47(4):1 181-1 189.

      [21] CAPOGNA M,MCKINNEY R A,O'CONNOR V,et al.Ca2+or Sr2+partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C,but not tetanus toxin[J].J Neurosci,1997,17(19):7 190-7 202.

      [22] VERDERIO C,POZZI D,PRAVETTONI E,et al.SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization[J].Neuron,2004,41(4):599-610.

      [23] SHIN M C,WAKITA M,XIE D J,et al.Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons[J].J Pharmacol Sci,2012,118(1):33-42.

      [24] ANTONUCCI F,ROSSI C,GIANFRANCESCHI L,et al.Long-distance retrograde effects of botulinum neurotoxin A[J].J Neurosci,2008,28(14):3 689-3 696.

      [25] RESTANI L,NOVELLI E,BOTTARI D,et al.Botulinum neurotoxin A impairs neurotransmission following retrograde transynaptic transport[J].Traffic,2012,13(8):1 083-1 089.

      [26] MATAK I,RIEDERER P,LACKOVIC Z.Botulinum toxin's axonal transport from periphery to the spinal cord[J].Neurochem Int,2012,61(2):236-239.

      [27] MARCHAND-PAUVERT V,AYMARD C,GIBOIN LS,et al.Beyond muscular effects:depression of spinal recurrent inhibition after botulinum neurotoxin A[J].J Physiol,2013,591(4):1 017-1 029.

      [28] OKADA M,NUTT D J,MURAKAMI T,et al.Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release[J].J Neurosci,2001,21(2):628-640.

      [29] MURAKAMI T,OKADA M,KAWATA Y,et al.Determination of effects of antiepileptic drugs on SNAREs-mediated hippocampal monoamine release using in vivo microdialysis[J].Br J Pharmacol,2001,134(3):507-520.

      [30] ANDO S,KOBAYASHI S,WAKI H,et al.Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine[J].J Neurosci Res,2002,70(3):519-527.

      [31] LUVISETTO S,ROSSETTO O,MONTECUCCO C,et al.Toxicity of botulinum neurotoxins in central nervous system of mice[J].Toxicon,2003,41(4):475-481.

      [32] LUVISETTO S,MARINELLI S,ROSSETTO O,et al.Central injection of botulinum neurotoxins:behavioural effects in mice[J].Behav Pharmacol,2004,15(3):233-240.

      [33] COSTANTIN L,BOZZI Y,RICHICHI C,et al.Antiepileptic effects of botulinum neurotoxin E[J].J Neurosci,2005,25(8):1 943-1 951.

      [34] FISHER R S,ACEVEDO C,ARZIMANOGLOU A,et al.ILAE official report:a practical clinical definition of epilepsy[J].Epilepsia,2014,55(4):475-482.

      [35] STALEY K.Molecular mechanisms of epilepsy[J].Nat Neurosci,2015,18(3):367-372.

      [36] ANTONUCCI F,BOZZI Y,CALEO M.Intrahippocampal infusion of botulinum neurotoxin E (BoNT/E) reduces spontaneous recurrent seizures in a mouse model of mesial temporal lobe epilepsy[J].Epilepsia,2009,50(4):963-966.

      [37] ANTONUCCI F,DI GARBO A,NOVELLI E,et al.Botulinum neurotoxin E (BoNT/E) reduces CA1 neuron loss and granule cell dispersion,with no effects on chronic seizures,in a mouse model of temporal lobe epilepsy[J].Exp Neurol,2008,210(2):388-401.

      [38] GASIOR M,TANG R,ROGAWSKI M A.Long-lasting attenuation of amygdala-kindled seizures after convection-enhanced delivery of botulinum neurotoxins a and B into the amygdala in rats[J].J Pharmacol Exp Ther,2013,346(3):528-534.

      [39] KATO K,AKAIKE N,KOHDA T,et al.Botulinum neuroto-xin A2 reduces incidence of seizures in mouse models of temporal lobe epilepsy[J].Toxicon,2013,74:109-115.

      [40] LOCHHEAD J J,THORNE R G.Intranasal delivery of biologics to the central nervous system[J].Adv Drug Deliv Rev,2012,64(7):614-628.

      [41] LEE J H,KAM E H,KIM J M,et al.Intranasal Administration of Interleukin-1 Receptor Antagonist in a Transient Focal Cerebral Ischemia Rat Model[J].Biomol Ther (Seoul),2017,25(2):149-157.

      [42] GUO Z,CHEN Y,MAO Y F,et al.Long-term treatment with intranasal insulin ameliorates cognitive impair-ment,tau hyperphosphorylation,and microglial activa-tion in a streptozotocin-induced Alzheimer's rat model[J].Sci Rep,2017,7:45 971.

      [43] DHURIA S V,HANSON L R,F(xiàn)REY W H,2nd.Intranasal delivery to the central nervous system:mechanisms and experimental considerations[J].J Pharm Sci,2010,99(4):1 654-1 673.

      [44] TAO H,ZHAO J,LIU T,et al.Intranasal Delivery of miR-146a Mimics Delayed Seizure Onset in the Lithium-Pilocarpine Mouse Model[J].Mediators Inflamm,2017,2017:6 512 620.

      猜你喜歡
      興奮性抗癲癇神經(jīng)遞質(zhì)
      趙經(jīng)緯教授團(tuán)隊(duì)成果揭示生長(zhǎng)分化因子11抑制p21延緩興奮性神經(jīng)元衰老和腦衰老并改善認(rèn)知老年化新機(jī)制
      槐黃丸對(duì)慢傳輸型便秘大鼠結(jié)腸神經(jīng)遞質(zhì)及SCF/c-kit通路的影響
      166例門(mén)診癲癇患兒抗癲癇藥超說(shuō)明書(shū)使用情況及影響因素分析Δ
      快樂(lè)不快樂(lè)神經(jīng)遞質(zhì)說(shuō)了算
      大眾健康(2021年2期)2021-03-09 13:32:23
      經(jīng)顱磁刺激對(duì)脊髓損傷后神經(jīng)性疼痛及大腦皮質(zhì)興奮性的影響分析
      怡神助眠湯治療失眠癥的療效及對(duì)腦內(nèi)神經(jīng)遞質(zhì)的影響
      興奮性氨基酸受體拮抗劑減輕宮內(nèi)窘迫誘發(fā)的新生鼠Tau蛋白的過(guò)度磷酸化和認(rèn)知障礙
      蔗糖鐵對(duì)斷奶仔豬生產(chǎn)性能及經(jīng)濟(jì)效益的影響
      頭部外傷后藥物預(yù)防癲癇可能有效
      長(zhǎng)期應(yīng)用抗癲癇藥物增加骨折風(fēng)險(xiǎn)
      新河县| 墨玉县| 霍林郭勒市| 新平| 雷波县| 澄城县| 岳西县| 黑龙江省| 邻水| 湖州市| 丁青县| 南康市| 南乐县| 子洲县| 嘉禾县| 辉南县| 寿光市| 栾城县| 广饶县| 赫章县| 高阳县| 南康市| 清水县| 施秉县| 梁平县| 灌阳县| 玛沁县| 凤台县| 洛南县| 焦作市| 阜城县| 枣强县| 科尔| 元谋县| 江城| 盐池县| 德庆县| 伊川县| 江源县| 庆安县| 通榆县|