許程媛
摘 要:立體幾何是高中數(shù)學(xué)的重點(diǎn)知識(shí),其試卷分值比例較大,需要高中生重點(diǎn)掌握。由于高中數(shù)學(xué)立體幾何多變性特征明顯,再加上學(xué)生邏輯思維能力較差,給立體幾何的教學(xué)帶來(lái)了一定的困難。主要從四個(gè)方面針對(duì)高中數(shù)學(xué)課堂中立體幾何的教學(xué)策略進(jìn)行分析。
關(guān)鍵詞:高中數(shù)學(xué)課;立體幾何;教學(xué)策略
立體幾何是高中階段的教學(xué)難點(diǎn),高中數(shù)學(xué)新課改針對(duì)立體幾何的教學(xué)內(nèi)容、教學(xué)結(jié)構(gòu)與教學(xué)體系進(jìn)行了改革,進(jìn)一步突出了學(xué)生空間想象能力與邏輯思維能力的培養(yǎng)。作為教師,我們要深刻意識(shí)到這一改變,深入研究教材、大綱,掌握高中數(shù)學(xué)新課改的變化,應(yīng)用新的教學(xué)模式與教學(xué)觀念將難點(diǎn)一一化解,提升學(xué)生的學(xué)習(xí)興趣,讓學(xué)生真正掌握立體幾何知識(shí),做到樂(lè)學(xué)、好學(xué)。那么,如何提高高中數(shù)學(xué)立體幾何的教學(xué)質(zhì)量呢?
一、鍛煉學(xué)生的基礎(chǔ)學(xué)習(xí)能力
數(shù)學(xué)學(xué)習(xí)具有階段性、整體性的特征,與其他學(xué)科不同,數(shù)學(xué)學(xué)科對(duì)于學(xué)生基礎(chǔ)知識(shí)的要求非常嚴(yán)格,各類(lèi)知識(shí)難度是逐步遞增的,在高一、高二和高三階段,學(xué)生的學(xué)習(xí)內(nèi)容都有所差異,這些內(nèi)容環(huán)環(huán)相扣,要讓學(xué)生學(xué)好立體幾何知識(shí),必須在高一乃至初中階段打好基礎(chǔ)。
在初中階段,學(xué)生已經(jīng)系統(tǒng)學(xué)習(xí)過(guò)平面幾何,平面幾何與立體幾何之間有著密切的關(guān)聯(lián),通過(guò)平面幾何的學(xué)習(xí),學(xué)生已經(jīng)對(duì)二維平面有了初步認(rèn)識(shí),立體幾何正是平面幾何的升級(jí),在課堂教學(xué)中,及時(shí)引入初中階段的二維知識(shí),對(duì)于學(xué)生立體幾何知識(shí)的學(xué)習(xí)是大有裨益的。作為教師,要幫助學(xué)生順利地渡過(guò)過(guò)渡階段,實(shí)現(xiàn)二維思維到三維思維的轉(zhuǎn)變。在教學(xué)環(huán)節(jié),教師要對(duì)學(xué)生之間的個(gè)體差異有正確的認(rèn)識(shí),制定系統(tǒng)化的教學(xué)模式,從基礎(chǔ)知識(shí)著手,逐步幫助學(xué)生熟練掌握各類(lèi)立體幾何的知識(shí)和解題
方法。
二、注重學(xué)生空間想象力的培養(yǎng)
立體幾何知識(shí)對(duì)于學(xué)生空間想象力的要求非常高,只有具備良好的空間想象力,才能滿足答題要求,這一能力的培養(yǎng)也是高中數(shù)學(xué)教學(xué)中的難點(diǎn)部分。
要實(shí)現(xiàn)這一目的,首先要從教師主導(dǎo)的教學(xué)方式轉(zhuǎn)化為以學(xué)生為主導(dǎo),引導(dǎo)學(xué)生自己動(dòng)手參與,制作數(shù)學(xué)模型,將空間想象力與現(xiàn)實(shí)生活相連,將抽象的知識(shí)形象化,提升學(xué)生的學(xué)習(xí)主動(dòng)性。模型的制作要選擇易得的材料,引導(dǎo)學(xué)生走出傳統(tǒng)思維的禁錮,挖掘生活中常見(jiàn)的物體來(lái)制作模型,解析空間幾何中蘊(yùn)含的結(jié)構(gòu)關(guān)系,鼓勵(lì)學(xué)生將所學(xué)的知識(shí)應(yīng)用到實(shí)踐問(wèn)題的解決中,把握好立體圖形的實(shí)質(zhì)。
在理論學(xué)習(xí)層面角度,也要實(shí)現(xiàn)立體幾何與平面幾何之間的有機(jī)銜接,這是高中階段學(xué)生需要掌握的必備知識(shí),而銜接的重點(diǎn)就是點(diǎn)線面關(guān)系到點(diǎn)線關(guān)系的轉(zhuǎn)變,如果學(xué)生可以掌握這一內(nèi)容,那么立體幾何難題將會(huì)變得迎刃而解,在教學(xué)活動(dòng)中,教師需要應(yīng)用從點(diǎn)到線、從線到面的轉(zhuǎn)化方式,從基礎(chǔ)知識(shí)點(diǎn)著手,幫助學(xué)生順利完成空間思維的轉(zhuǎn)變。
三、提升學(xué)生的邏輯推理能力
邏輯推理能力也是學(xué)生在高中階段需要重點(diǎn)掌握的能力,利用邏輯推理能力,可以讓學(xué)生在學(xué)習(xí)幾何定理的基礎(chǔ)上,逐步完成立體幾何知識(shí)的推理,讓立體幾何知識(shí)的教學(xué)變得更加系統(tǒng)、全面,提升學(xué)生的邏輯推理能力,可以有效提升學(xué)生的解題能力。該種能力的培養(yǎng)包括兩個(gè)環(huán)節(jié):
1.證明環(huán)節(jié)
證明是高考數(shù)學(xué)解題的核心環(huán)節(jié),在各類(lèi)題型中,都占據(jù)著很高的比例,關(guān)于證明的教學(xué),不能簡(jiǎn)單將其步驟化,而是要幫助學(xué)生把握清楚條件與結(jié)論之間的關(guān)系,做到舉一反三。
2.邏輯環(huán)節(jié)
高中數(shù)學(xué)知識(shí)點(diǎn)本身具有邏輯性的特征,在教學(xué)活動(dòng)中,教師要充分凸顯出邏輯性的特征,把握好課堂教學(xué)節(jié)奏,讓學(xué)生對(duì)數(shù)學(xué)邏輯結(jié)構(gòu)產(chǎn)生深刻的認(rèn)知,從而有效提升學(xué)生的邏輯思維
能力。
四、夯實(shí)數(shù)學(xué)基礎(chǔ)技能與知識(shí)
高中數(shù)學(xué)具有很強(qiáng)的邏輯性與系統(tǒng)性,要學(xué)好立體幾何,僅僅單一地依靠方法和興趣是遠(yuǎn)遠(yuǎn)不夠的,知識(shí)與技能的掌握也是一個(gè)重要因素,所謂“萬(wàn)丈高樓平地起”正是這個(gè)道理,如果地基打得不結(jié)實(shí),那么后續(xù)的知識(shí)學(xué)習(xí)起來(lái),將會(huì)困難重重。所謂的地基,就是數(shù)學(xué)教材中的定理、公式、概念,在教學(xué)活動(dòng)中,教師不能顧此失彼,必須要把握好基礎(chǔ)知識(shí)與基本技能的滲透。
此外,還要加強(qiáng)立體幾何在現(xiàn)實(shí)生活的應(yīng)用和聯(lián)系。立體幾何課程從空間幾何體開(kāi)始,利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量的空間圖形,使學(xué)生歸納出柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu)。
立體幾何問(wèn)題是高中數(shù)學(xué)教學(xué)的重難點(diǎn)內(nèi)容,在這類(lèi)數(shù)學(xué)題解答過(guò)程中,需要靈活運(yùn)用構(gòu)造輔助圖形、變換圖形、設(shè)而不求等解題技巧和方法,準(zhǔn)確把握幾何立體中各種量、線、面之間的關(guān)系,只有這樣才能準(zhǔn)確、迅速解答出立體幾何問(wèn)題,起到事倍功半的效果。
參考文獻(xiàn):
[1]仇夜生.高中立體幾何教學(xué)中如何幫助學(xué)生形成空間想象能力[J].中國(guó)校外教育,2016(12).
[2]仵友軍.多媒體教學(xué)與學(xué)生空間想象能力的培養(yǎng)[J].新課程(中學(xué)),2013(10).
[3]劉建明.培養(yǎng)學(xué)生數(shù)學(xué)空間想象能力的教學(xué)策略[J].寧波教育學(xué)院學(xué)報(bào),2005(1).
[4]孫仙.高中數(shù)學(xué)教學(xué)中學(xué)生空間想象能力的培養(yǎng)探究[J].中華少,2017(14).
?誗編輯 魯翠紅endprint