• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      PCSK9降解低密度脂蛋白受體分子機制研究進展

      2020-10-29 05:39:02吳玉嫻王琰
      遺傳 2020年10期
      關(guān)鍵詞:溶酶體結(jié)構(gòu)域血癥

      吳玉嫻,王琰

      PCSK9降解低密度脂蛋白受體分子機制研究進展

      吳玉嫻,王琰

      武漢大學(xué)生命科學(xué)學(xué)院,細胞穩(wěn)態(tài)湖北省重點實驗室,武漢 430072

      血清低密度脂蛋白膽固醇(low density lipoprotein cholesterol, LDL-C)水平的升高是導(dǎo)致心血管疾病發(fā)生的主要危險因素。低密度脂蛋白受體(LDL receptor, LDLR)介導(dǎo)的低密度脂蛋白(low density lipoprotein, LDL)清除是決定循環(huán)中LDL-C水平的主要因素。LDL與細胞表面的LDLR結(jié)合后通過經(jīng)典的網(wǎng)格蛋白小窩(clathrin-coated vesicles)內(nèi)化進入細胞。在酸性核內(nèi)體中,LDLR與LDL解離并循環(huán)回到細胞表面,釋放的LDL將被運送到溶酶體中降解。前蛋白轉(zhuǎn)化酶枯草溶菌素9 (proprotein convertase subtilisin kexin type 9, PCSK9)編碼一種肝臟分泌型蛋白,其突變與LDL-C水平密切相關(guān)。前期研究已經(jīng)證明,PCSK9直接與細胞表面的LDLR相互作用,二者一起通過網(wǎng)格蛋白小窩內(nèi)化進入細胞。然而,在酸性核內(nèi)體中,PCSK9和LDLR形成緊密的復(fù)合物,并進入溶酶體中進行降解,從而減少肝細胞表面LDLR的水平,降低肝臟對LDL-C的清除,該過程對于維持血漿中LDL在相對恒定的水平具有重要作用。因此,阻斷PCSK9功能已成為治療高膽固醇血癥的新策略。本文綜述了PCSK9的功能和機制研究的最新進展,并著重介紹了PCSK9抑制劑的研究進展,旨在為PCSK9-LDLR通路的研究和膽固醇代謝的調(diào)控提供參考。

      LDL-C;LDL受體;PCSK9;囊泡內(nèi)吞;PCSK9抑制劑

      膽固醇是人體生命活動必不可少的脂類物質(zhì)[1,2]。血漿中膽固醇水平的升高會引發(fā)動脈粥樣硬化性心血管疾病,同時大大增加心肌梗死和卒中的風(fēng)險[3,4]。人體中60%~70%的血漿膽固醇由低密度脂蛋白(low density lipoprotein, LDL)運輸[5],而血漿中75%左右的LDL通過肝臟細胞的低密度脂蛋白受體(low- density lipoprotein receptor, LDLR)內(nèi)吞進入肝臟細胞被清除[6],其余25%左右被外周組織器官吸收利用。LDLR介導(dǎo)的LDL內(nèi)吞途徑被認為是機體清除血漿LDL最為重要和高效的方式[7]。

      前蛋白轉(zhuǎn)化酶枯草溶菌素9 (propro-tein conver-tase subtilise kexin 9, PCSK9)可結(jié)合LDLR并介導(dǎo)其降解,從而調(diào)節(jié)血漿低密度脂蛋白膽固醇水平(low density lipoprotein cholesterol, LDL-C)[7,8]。研究發(fā)現(xiàn),的一些突變體會造成常染色體顯性高膽固醇血癥(autosomal dominant hypercholesterolemia, ADH)[9~12]。PCSK9介導(dǎo)LDLR降解通路的發(fā)現(xiàn)使得PCSK9成為心血管疾病治療的新靶點,也促使人們迅速研究PCSK9的生物學(xué)機制[13]。本文主要對LDLR和PCSK9的蛋白結(jié)構(gòu)、生物學(xué)功能及PCSK9降解LDLR的分子機制及相關(guān)抑制劑的開發(fā)等方面的研究進展進行了綜述,為膽固醇代謝調(diào)控的分子機制的研究和高血脂癥的治療提供參考。

      1 LDLR結(jié)構(gòu)與功能

      美國西南醫(yī)學(xué)中心的兩位科學(xué)家Brown和Goldstein等[14,15]于1974年在研究家族性高膽固醇血癥(familial hypercholesterolemia, FH)時發(fā)現(xiàn)了LDLR的存在,這一發(fā)現(xiàn)對脂蛋白、載脂蛋白的深入研究有巨大的推進作用。

      LDLR是一個單鏈單次跨膜糖蛋白, 廣泛分布于肝臟、動脈壁平滑肌、血管內(nèi)皮細胞和白細胞。LDLR成熟體由839個氨基酸組成,在結(jié)構(gòu)上分為5個功能區(qū),包括:配體結(jié)合結(jié)構(gòu)域(ligand binding domain)、表皮生長因子前體結(jié)構(gòu)域(EGF precursor structure domain)、含O-連接糖鏈結(jié)構(gòu)域(O-linked sugars structure domain)、跨膜結(jié)構(gòu)域(transmembrane domain)和胞漿結(jié)構(gòu)域(cytoplasmic structure do-main)[16,17],其中配體結(jié)合結(jié)構(gòu)域由7個配體結(jié)合重復(fù)序列LR1-LR7 (ligand binding repeat)組成,EGF前體結(jié)構(gòu)域包括3個EGF樣重復(fù)序列(EGF-A、B、C)和一個6個YWTD模體組成的β 螺旋結(jié)構(gòu)[18]。

      LDLR的主要功能是攝入血漿膽固醇,人體血漿中大約75%的LDL是通過介導(dǎo)的內(nèi)吞作用進入各組織細胞所清除(圖1),其余由清道夫受體(scavenger receptor)攝取、氧化以及由周圍組織進行非受體介導(dǎo)途徑所攝取[16,19]。在LDLR介導(dǎo)LDL內(nèi)吞的過程中,LDL中的載脂蛋白ApoB100與LDLR結(jié)合形成復(fù)合體,同時,在常染色體隱性高膽固醇血癥銜接蛋白(autosomal dominant hypercholesterolemia, ADH)和AP-2 (adaptin protein 2)以及網(wǎng)格蛋白介導(dǎo)下啟動內(nèi)吞作用[20]。隨著核內(nèi)體中pH值的降低,LDLR從開放構(gòu)象轉(zhuǎn)變?yōu)榉忾]構(gòu)象,釋放結(jié)合的LDL,LDLR循環(huán)回到細胞膜表面[21,22],而LDL被運送到溶酶體水解[16,23]。由此可見,LDLR介導(dǎo)的LDL內(nèi)吞途徑對于維持血漿LDL在相對恒定的水平有重要作用。

      圖1 LDLR介導(dǎo)LDL的內(nèi)吞及LDLR循環(huán)

      LDLR與血液中的LDL在膜上結(jié)合成LDL/LDLR復(fù)合物,后被合并到包合網(wǎng)格蛋白的囊泡中,囊泡在核內(nèi)體內(nèi)解離,LDLR自由地返回到細胞表面(循環(huán)),而LDL則被運送到溶酶體,在溶酶體中被降解。

      2 PCSK9蛋白結(jié)構(gòu)與功能

      2003年,Marianne等[9]在兩個常染色體顯性形式的FH的法國家庭中發(fā)現(xiàn)兩種基因突變——S127R和F216L可導(dǎo)致嚴重的家族性高膽固醇血癥。這是繼和之后第3個被發(fā)現(xiàn)的與高膽固醇血癥有關(guān)的基因[24,25]。

      2.1 PCSK9蛋白的結(jié)構(gòu)

      是枯草溶菌素蛋白酶K亞家族的第9個成員,該基因編碼的蛋白質(zhì)由692個氨基酸殘基組成,包含N端信號肽序列、前結(jié)構(gòu)域、催化結(jié)構(gòu)域、樞紐域和富含半胱氨酸的C端結(jié)構(gòu)域[26,27]。PCSK9蛋白主要表達于肝臟,也在小腸、腎臟、胰腺β細胞、巨噬細胞和血管平滑肌細胞甚至脂肪細胞中表達[28,29],以分泌性蛋白的形式隨血液循環(huán)。不同于原蛋白轉(zhuǎn)化酶家族的其他成員,PCSK9在合成后被導(dǎo)向內(nèi)質(zhì)網(wǎng),其中信號肽在內(nèi)質(zhì)網(wǎng)上被剪切,在152位殘基處經(jīng)歷一次自催化剪切激活,形成一個14 kDa的前結(jié)構(gòu)片段和一個60 kDa的糖基化成熟體。剪切后的前結(jié)構(gòu)域仍然以非共價鍵結(jié)合在成熟體上,與成熟片段形成一個復(fù)合體[30],前結(jié)構(gòu)域通過結(jié)合在催化結(jié)構(gòu)域上來抑制蛋白酶催化活性,這一步驟是PCSK9轉(zhuǎn)運至高爾基體和以不活躍的二聚體復(fù)合物分泌所必需的[31]。隨后復(fù)合體離開內(nèi)質(zhì)網(wǎng)轉(zhuǎn)運到高爾基體中,在高爾基體中經(jīng)過乙?;纫幌盗行揎椇笞罱K分泌到血液中[32,33]。

      2.2 PCSK9降解LDLR的分子機制

      自2003年被發(fā)現(xiàn)與家族性高膽固醇血癥有關(guān)聯(lián)后,時隔2年后人們確立了中兩種相對常見的“功能缺失型”突變和低血漿LDL-C水平之間的因果關(guān)系[34]。此后的數(shù)年間,研究人員開始研究PCSK9和LDLR的互作。隨著實驗方法和技術(shù)的更新?lián)Q代,人們對PCSK9介導(dǎo)LDLR降解的分子機制有了更多的發(fā)現(xiàn)。2012,Wang等[35]發(fā)現(xiàn)結(jié)合PCSK9的LDLR依然通過經(jīng)典的網(wǎng)格蛋白(clathrin)內(nèi)吞囊泡途徑進入細胞,最終在溶酶體被降解,而這一過程完全不需要泛素化與蛋白酶體途徑、細胞自噬途徑和ESCRT途徑,這一發(fā)現(xiàn)對理解PCSK9的作用機制提供了新的思路。

      目前發(fā)現(xiàn)PCSK9介導(dǎo)LDLR的降解有兩種機制:胞內(nèi)途徑和胞外途徑(圖2)。因此,PCKS9-LDLR復(fù)合物的結(jié)合和形成既可以發(fā)生在細胞內(nèi),也可以發(fā)生在細胞表面。由于這些里程碑式的觀察和發(fā)現(xiàn),PCSK9已經(jīng)成為一個非常有吸引力的藥物靶點和深入研究的課題。

      2.2.1 PCSK9介導(dǎo)LDLR降解的胞內(nèi)途徑

      2004年,Park等[36]首次發(fā)現(xiàn),在敲除小鼠中過表達后,肝臟的水平依然降低,人家據(jù)此推斷PCSK9降解LDLR存在一種不依賴于ARH的細胞內(nèi)途徑,后來Homer等[37]在南非人群中發(fā)現(xiàn)兩種突變體——S127R和D129G,這兩種突變體的自催化和向胞外分泌過程被強烈抑制,卻依舊能降低的表達和活性[37],進一步證實了“胞內(nèi)途徑”的猜想。2009年,Poirier等[38]發(fā)現(xiàn):通過敲低網(wǎng)格蛋白輕鏈(clathrin light chain, CLCs)阻斷從高爾基體網(wǎng)絡(luò)到溶酶體的囊泡運輸,HepG2細胞內(nèi)的LDLR水平以PCSK9劑量依賴的方式迅速上升,而外源性PCSK9增強LDLR降解的能力不受影響。由此確定了內(nèi)源水平上PCSK9誘導(dǎo)的LDLR降解的細胞內(nèi)路徑的存在。分泌前的成熟的PCSK9在從內(nèi)質(zhì)網(wǎng)進入高爾基體網(wǎng)絡(luò)后,與包裹著LDLR的囊泡結(jié)合,并直接介導(dǎo)LDLR直接進入溶酶體降解[38]。在肝臟中,PCSK9主要通過細胞外途徑促進LDLR的降解,推斷可能是當胞外途徑被人為阻斷或PCSK9過表達時,這種代償性的不依賴于網(wǎng)格蛋白的胞內(nèi)途徑就被激活[7]。關(guān)于PCSK9降解LDLR的胞內(nèi)途徑的具體分子機制尚需要更深一步的研究,但這一發(fā)現(xiàn)為治療高膽固醇血癥和冠心病提供了一個新的指導(dǎo)方向。

      圖2 PCSK9介導(dǎo)LDLR降解的兩種途徑

      PCSK9降解LDLR的兩種途徑:胞內(nèi)途徑(紅色虛線箭頭)和胞外途徑(黑色實線箭頭)。胞內(nèi)途徑—PCSK9在分泌前與細胞內(nèi)的LDLR相遇,直接進入溶酶體降解;胞外途徑—分泌到胞外的PCSK9與LDLR通過網(wǎng)格蛋白介導(dǎo)的內(nèi)吞方式進入細胞內(nèi),最終在溶酶體降解。

      2.2.2 PCSK9介導(dǎo)LDLR降解的胞外途徑

      一系列聯(lián)體共生動物實驗清楚地表明,PCSK9降解LDLR的生理過程主要是通過胞外途徑[39,40]。

      分泌到肝細胞外的PCSK9蛋白與LDLR結(jié)合,其中PCSK9的催化結(jié)構(gòu)域和LDLR的EGF-A區(qū)域是二者結(jié)合的關(guān)鍵結(jié)構(gòu)。PCSK9的催化結(jié)構(gòu)域以鈣依賴的方式特異性結(jié)合到位于細胞膜上的LDLR的EGF-A的N端區(qū)域,由此形成PCSK9/LDLR復(fù)合體[41~44]。ARH與LDLR的胞漿結(jié)構(gòu)域相互作用,從而介導(dǎo)PCSK9/LDLR復(fù)合體通過網(wǎng)格蛋白介導(dǎo)的胞吞途徑一起內(nèi)吞進入核內(nèi)體。由于核內(nèi)體中pH值降低,帶正電荷的PCSK9的C端結(jié)構(gòu)域與帶負電荷的LDLR的配體結(jié)合結(jié)構(gòu)域上的LRs發(fā)生靜電相互作用,LDLR的配體結(jié)合重復(fù)域中的Asp殘基(Asp172和Asp203)參與了互作[43],進一步增強了PCSK9與LDLR的親和力[45,46],由此提升了復(fù)合物的穩(wěn)定性,抑制LDLR恢復(fù)閉合構(gòu)象,使其不能釋放配體也無法離開內(nèi)體返回細胞表面。接下來PCSK9/LDLR復(fù)合物進入溶酶體,PCSK9和LDLR均被降解[47]。

      一些突變體如D374Y和S127R以及的突變體H306Y會導(dǎo)致家族性高膽固醇血癥[17],突變體通過增強PCSK9/LDLR復(fù)合物內(nèi)的分子相互作用來破壞LDLR,進而影響LDL-C。如D374Y突變體通過與LDLR的EGFA結(jié)構(gòu)域之間形成氫鍵,從而使得其與LDLR結(jié)合的親和性相比于野生型PCSK9提高了6~30倍[48],從而促進LDLR降解,增加循環(huán)的LDL-C水平[42~44,49,50],因此,這些突變體攜帶者也會比其他FH患者更早地受到心血管疾病的影響。

      PCSK9介導(dǎo)LDLR降解的過程中是否有其他分子參與調(diào)節(jié),是一直以來研究的熱點,人們對此也有諸多猜想和發(fā)現(xiàn)。一方面立足于PCSK9降解LDLR的生理過程具有的組織特異性,在肝臟中其效果最為明顯,在腎上腺和成人腦部分區(qū)域中PCSK9不能(或幾乎不能)調(diào)節(jié)LDLR水平[51,52]。由于銜接蛋白ARH是肝細胞中PCSK9/LDLR復(fù)合物內(nèi)化所必需的,在其他類型的細胞中則不是必需的[40,53,54],所以由此人們推測:PCSK9降解LDLR需要組織特異性的分子伴侶,且分子伴侶可能與PCSK9的C端結(jié)構(gòu)域相互作用來參與調(diào)控[30,55]。最新的一項研究發(fā)現(xiàn)了一種參與PCSK9結(jié)合并降解LDLR過程的重要因子—肝素硫酸酯蛋白聚糖(heparin sulfate pro-teoglycans, HSPG)。HSPG是一種大量存在于多種細胞表面及細胞外基質(zhì)的蛋白聚糖,在脂蛋白代謝尤其是結(jié)合配體的內(nèi)吞過程中起著重要的生理作用[56]。不同于其他組織和細胞,肝細胞上的HSPG的乙酰肝素鏈化學(xué)性質(zhì)特殊,其中含有較豐富的N-位硫酸化的氨基葡萄糖(GlcN)和2-O-位硫酸化的艾杜糖醛酸(IDoA),并且三硫酸雙糖單位在全鏈中所占的比例較高。PCSK9對由GlcN和IDoA組成的三硫酸乙酰肝素二糖重復(fù)結(jié)構(gòu)表現(xiàn)出高度的選擇性和親和性。由此,肝細胞表面上HSPG可大量招募血液中的PCSK9蛋白并通過PCSK9前結(jié)構(gòu)域的6個暴露的氨基酸位點與之緊密結(jié)合,這種結(jié)合對于體內(nèi)和體外PCSK9/LDLR復(fù)合體的形成及降解至關(guān)重要[57]。因此,針對HSPG結(jié)合位點的單克隆抗體和肝素類似物等是有效的PCSK9抑制劑,可作為潛在的CAD治療手段。

      2019年,Huang等[58]發(fā)現(xiàn)了PCSK9和LDLR結(jié)合及降解過程中的一個新的參與者——黃體酮和脂質(zhì)受體3(progestin and AdipoQ receptor 3, PAQR3)。PAQR3主要定位于高爾基體,主要通過抑制Raf激酶和PI3K/AKT介導(dǎo)的促生長信號通路發(fā)揮抑癌作用[58,59]。研究發(fā)現(xiàn)當PAQR3過表達時可劑量依賴性地增強LDLR與PCSK9的相互作用。相反,當肝臟PAQR3被敲除時內(nèi)源性PCSK9與LDLR的相互作用減少?;铙w實驗也證明了PAQR3的缺失導(dǎo)致肝臟中LDLR/PCSK9復(fù)合物的形成減少,LDLR水平升高,導(dǎo)致血漿LDL-C和膽固醇水平下降。通過免疫共沉淀進一步發(fā)現(xiàn)PAQR3可在早期核內(nèi)體中與LDLR的β螺旋結(jié)構(gòu)域結(jié)合,又能與PCSK9的前結(jié)構(gòu)域互作,并且PAQR3可通過這種中間體的互作來增強LDLR/PCSK9復(fù)合體的相互作用,從而調(diào)節(jié)LDLR的降解。

      關(guān)于PCSK9降解LDLR的分子機制的另一猜想是蛋白質(zhì)的翻譯后修飾。PCSK9蛋白轉(zhuǎn)錄后會經(jīng)歷一系列修飾,包括糖基化[60]、硫化[32]和磷酸化修飾[61]。Ben Djoudi Ouadda等[62]首次發(fā)現(xiàn):Fam20C/ Fam20A復(fù)合體作為PCSK9的主要的分泌激酶,可在PCSK9蛋白的第47、666、668和688位絲氨酸位點對其進行磷酸化修飾,且這種磷酸化修飾在體內(nèi)和體外都被證實不僅增強了PCSK9從高爾基體向細胞表面的轉(zhuǎn)運及分泌,還使得PCSK9與LDLR結(jié)合親和力均提升了約2倍,由此最大化誘導(dǎo)PCSK9降解LDLR[62]。此外有研究發(fā)現(xiàn):向表達LDLR的細胞加入PCSK9共培養(yǎng)時LDLR出現(xiàn)了泛素化,同時發(fā)現(xiàn)當LDLR分子C端上的兩個泛素化位點發(fā)生突變時,LDLR不能被PCSK9誘導(dǎo)降解。因此推測,PCSK9介導(dǎo)的LDLR的降解需要LDLR的泛素化[55]。

      2.3 PCSK9蛋白的其他功能

      PCSK9在多種器官和細胞中的表達意味著它除了控制LDL代謝之外可能還發(fā)揮多種生物學(xué)功能。多項研究發(fā)現(xiàn)PCSK9在中樞神經(jīng)系統(tǒng)發(fā)育、動脈粥樣硬化發(fā)病、免疫應(yīng)答和腫瘤發(fā)生等多種生物學(xué)功能中發(fā)揮作用[63]。

      PCSK9最顯著的功能是通過降解肝細胞表面的LDLR來調(diào)節(jié)血脂代謝[64]。除此之外,有研究發(fā)現(xiàn)PCSK9可能通過上調(diào)凝集素型氧化低密度脂蛋白受體1 (lectin-like oxidized low density lipoprotein rece-ptor-1, LOX-1)的表達介導(dǎo)巨噬細胞攝取氧化型低密度脂蛋白,從而直接促進動脈粥樣硬化的形成[65],這表明PCSK9也可能以非膽固醇依賴的方式直接發(fā)揮促動脈粥樣硬化作用。

      除了與LDLR結(jié)合外,PCSK9還與其他受體相互作用并控制其降解,如載脂蛋白E受體(apoli-poprotein receptor 2)[66]、LDLR相關(guān)蛋白1 (lipo-protein receptor-related protein 1, LRP1)[67],VLDLR (very low density lipoprotein receptors)[68]、CD36[69]、CD81[70]和上皮細胞Na+通道[71]。

      PCSK9最早被發(fā)現(xiàn)參與皮層神經(jīng)元的分化,因此被稱為神經(jīng)凋亡調(diào)節(jié)的轉(zhuǎn)化酶1 (NARC-1)[60]。研究發(fā)現(xiàn):斑馬魚()/的特異性敲除導(dǎo)致小腦神經(jīng)元的普遍紊亂和后腦中腦邊界的丟失,受精后96 h胚胎死亡,說明NARC-1/PCSK9在中樞神經(jīng)系統(tǒng)發(fā)育中起著至關(guān)重要的作用[72]。PCSK9與機體感染也有一定關(guān)聯(lián),其在膿毒癥中有調(diào)節(jié)炎癥的作用[73],PCSK9過表達可加重早期膿毒癥的多器官病理和促炎狀態(tài)[74]。抑制PCSK9的表達還能有效抑制神經(jīng)元、膠質(zhì)瘤細胞的凋亡[75,76]。已有證據(jù)表明,PCSK9可能通過調(diào)節(jié)LDLR的表達來調(diào)節(jié)親脂性病原體相關(guān)分子模式的識別參與對某些病原體的免疫應(yīng)答[73]。

      PCSK9信號通路是分子生物學(xué)面臨的重大挑戰(zhàn),除了脂質(zhì)代謝外,PCSK9其他的生理功能仍知之甚少,需要進一步地深入探索和發(fā)現(xiàn)。

      3 PCSK9與人類疾病

      PCSK9多種生物學(xué)功能決定了其可能與多種疾病的發(fā)生發(fā)展有關(guān)。截至目前研究較為清晰的是PCSK9在高膽固醇血癥和膿毒癥中的調(diào)節(jié)作用,其余多種相關(guān)的生理病理機制尚有待探索。

      3.1 人群中PCSK9基因多態(tài)性和血脂異常

      基因的某些突變可以改變蛋白質(zhì)的氨基酸結(jié)構(gòu),從而改變其酶活、功能和對LDLR的親和力。根據(jù)基因突變對血漿膽固醇水平的影響,將其分為功能獲得型突變(gain-of-function, GOF)和功能缺失型突變(loss-of-function, LOF)。功能獲得型突變的PCSK9與高膽固醇血癥密切相關(guān),會引起動脈粥樣硬化[12];2003年,在兩個患常染色體高膽固醇血癥的法國家庭中發(fā)現(xiàn)兩種-GOF突變——S127R和F216L。此后,引起高膽固醇血癥的其他GOF突變?nèi)鏒374Y、E32K、D374H、R469W和D129G被陸續(xù)發(fā)現(xiàn)[10,32,42,63,77]。功能缺失型突變的PCSK9能減少LDLR的內(nèi)吞,使LDLR不容易被清除,從而降低血液膽固醇[28,78]。在2005年,Cohen等[34]描述了兩種LOF突變——Y142X and C679X,這兩種突變攜帶者在非洲裔美國人群中出現(xiàn)頻率更高,LDL-C水平只有(100 ± 45) mg/dL,與正常人的(138 ± 42) mg/dL相比減少了28%,患冠心病的風(fēng)險可下降88%[11,28]。此后又陸續(xù)在南非和新西蘭人群中以及歐洲白種人分別發(fā)現(xiàn)了兩種LOF突變——R237W和R46L[37,61]?;谶@些發(fā)現(xiàn),筆者猜想:與膽固醇血癥有關(guān)的突變型與地域及飲食習(xí)慣可能有一定規(guī)律性和關(guān)聯(lián)性。

      3.2 PCSK9與其他疾病

      有證據(jù)表明,PCSK9可能由炎癥刺激誘導(dǎo),本身可能是炎癥介質(zhì)[79],其在膿毒癥的調(diào)節(jié)作用最為突出。膿毒癥特點是炎癥和凝血的系統(tǒng)激活,嚴重膿毒癥伴有至少一個器官功能障礙,在美國每年有0.3%的人受感染,死亡率為30%[80]。遺傳數(shù)據(jù)表明,在人類中LOF (R46L)多態(tài)性與膿毒癥患者的生存率升高和降低細胞因子水平相關(guān),而GOF (E670G)多態(tài)性則具有相反的效果,并且給健康志愿者靜脈注射內(nèi)毒素后R46L攜帶者中細胞因子水平明顯更低[81]。研究表明內(nèi)毒素脂多糖(lipopoly-saccharide, LPS)與脂蛋白結(jié)合,通過LDLR以及包括VLDLR在內(nèi)的受體內(nèi)化于肝細胞清除[82]。這說明PCSK9通過降低肝細胞上的LDLR水平,從而在感染膿毒癥時降低肝臟對LPS的LDLR依賴性攝取,加劇局部或全身炎癥[73]。還有研究發(fā)現(xiàn),PCSK9可通過MAPK通路促進氧化型低密度脂蛋白(oxidized low density lipoprotein, ox-LDL)誘導(dǎo)血管內(nèi)皮細胞凋亡,由此減弱斑塊氧化應(yīng)激和炎癥,提示PCSK9可能通過非LDLR途徑直接參與動脈粥樣硬化的調(diào)控[83]。

      有研究發(fā)現(xiàn)PCSK9的LOF基因變異與乳腺癌發(fā)病率降低相關(guān),而PCSK9的GOF基因變異與乳腺癌風(fēng)險增加相關(guān),PCSK9的表達可抑制肝癌、前列腺癌和黑色素瘤等腫瘤的發(fā)生發(fā)展[84~86],表明PCSK9可能對腫瘤生長有一定影響[87]。除此之外,前人提出PCSK9對血糖代謝和腎功能的調(diào)節(jié)作用的猜想,但遺傳學(xué)研究和觀察性研究的結(jié)果與臨床數(shù)據(jù)往往相悖,并且分子機制未明,所以相關(guān)猜想仍存在爭議[71,88~93]。PCSK9在某些神經(jīng)退行性疾病中發(fā)揮的作用尚未在人體得到最終驗證[63,94]。

      總體而言,PCSK9與這些疾病的觀察和猜想盡管是初步的且分子機制未明,但也提供了關(guān)于PCSK9抑制劑在調(diào)節(jié)血脂之外的安全性的重要信息。

      4 PCSK9抑制劑

      PCSK9抑制劑通過抑制PCSK9的表達或PCSK9降解LDLR的結(jié)合,起到提升肝細胞膜上LDLR水平,減少血液中LDL-C積累的作用。根據(jù)作用機制的不同,PCSK9抑制劑可分為單克隆抗體、RNA干擾(small interfering RNA, siRNA)和多肽抑制物等。

      4.1 單克隆抗體

      目前市場上已有兩種FDA批準的藥用的人類單克隆抗體:Alirocumab和Evolocumab[95]。單克隆抗體通過中和PCSK9來抑制PCSK9與LDLR的相互作用,導(dǎo)致LDLR數(shù)量增加,最終增強LDL的吸收。在高膽固醇血癥和非家族性膽固醇升高的血脂異?;颊咧?,當單獨使用Alirocumab或Evolocumab或者將單克隆抗體與其他降脂藥物聯(lián)合使用時,均可顯著降低高達60%的LDL[96~98]。PCSK9單抗可減輕不良反應(yīng),降低心血管事件和肝功能異常的發(fā)生率,逆轉(zhuǎn)動脈粥樣硬化斑塊,但靜脈給藥及抗體制備所導(dǎo)致的成本過高使得其難以推廣使用。

      4.2 RNA干擾藥物

      目前很有前景的一類的PCSK9抑制藥物是通過類脂納米顆粒(lipidoid nanoparticle)包裹著siRNA來抑制PCSK9的表達[99]。這種方法不僅可以降低循環(huán)的PCSK9水平,還可以有效降低細胞內(nèi)的PCSK9水平。2期臨床研究表明,siRNA降脂藥物inclisiran 在第1天和第90天注射可使得健康志愿者的LDL-C水平降低52.6%,達到與PCSK9單抗相似的降脂效果[100]。siRNA作為藥物的優(yōu)點在于其選擇性相對較高,有利于降低脫靶率,幾乎無不良反應(yīng)發(fā)生,到目前為止inlisiran尚未發(fā)現(xiàn)副作用,但也需要更多的數(shù)據(jù)來科學(xué)評估其是否可以應(yīng)用于臨床[101,102]。

      4.3 模擬肽

      模擬LDLR的EGF-A結(jié)構(gòu)域的短肽通過與PCSK9競爭性結(jié)合LDLR的EGF-A結(jié)構(gòu)域,從而抑制LDLR的降解,增加LDL的吸收。第一個有效抑制PCSK9-LDLR結(jié)合的EGF-A類似小分子肽是EGF66,其與PCSK9結(jié)合并在HepG2細胞和小鼠中均可抑制PCSK9誘導(dǎo)的LDLR降解[103]。此后又設(shè)計出了第一代含16個殘基的線性肽MESFPGWNLV (homoR) IGLLR,它可以拮抗PCSK9活性,目前正在改進結(jié)構(gòu)并產(chǎn)生一種有效的口服活性小分子抑制劑[104]。如果能解決肽在血漿中不穩(wěn)定、口服后難以被吸收等問題,模擬肽將是一種有前途的、經(jīng)濟有效的PCSK9單抗替代藥物。

      4.4 疫苗

      基于PCSK9肽的疫苗消除內(nèi)源性循環(huán)的PCSK9是一種新的抑制PCSK9的手段。疫苗的一期臨床數(shù)據(jù)顯示:在健康受試者中,誘導(dǎo)免疫是安全的且具有良好耐受性;超過90%的免疫受試者產(chǎn)生PCSK9特異性抗體反應(yīng),在首次誘導(dǎo)后70周時LDL-C平均下降13.3%,并在加強免疫后持續(xù)至少30周[105]。雖然這種方法看起來更為簡單易行,效果也更持久,但關(guān)鍵是仍然無法排除成人肝臟中由于沒有PCSK9表達而產(chǎn)生任何嚴重的意外副作用的危險性,特別是在肝功能受損的情況下。

      4.5 其他

      除了以PCSK9或LDLR作為藥物靶點外,人們也嘗試通過阻斷PCSK9的合成和分泌達到抑制LDLR降解的功效。Sortilin可協(xié)助PCSK9轉(zhuǎn)運至高爾基體而促使其從肝細胞分泌。在Sortilin敲低時PCSK9的表達降低,由此減弱PCSK9對LDLR的降解[106]。此外,Sec24a、SRT3025和Q125H等蛋白能抑制PCSK9分泌[107]。硫酸肝素可介導(dǎo)PCSK9和LDLR之間的結(jié)合,且這種作用對于LDLR進入溶酶體降解是不可或缺的。小分子肝素類似物可干擾PCSK9與LDLR的關(guān)聯(lián),增加質(zhì)膜中LDLR的數(shù)量[57]。天然產(chǎn)物槲皮素-3-O-葡萄糖苷(quercetin- 3-b-D-glucoside, Q3G)可減少PCSK9的分泌,同時增加LDLR的表達[108]。這些觀察結(jié)果為開發(fā)治療高脂血癥的新方法提供了新思路。

      5 結(jié)語與展望

      近20年的實驗和臨床研究表明LOF突變與LDL-C水平降低、心血管并發(fā)癥發(fā)生率降低和全因死亡率降低相關(guān)[109]。人們也確定了PCSK9通過介導(dǎo)LDLR降解來影響LDL-C的生理過程。PCSK9主要通過胞外途徑來影響LDL水平,血漿中循環(huán)的PCSK9通過自身催化結(jié)構(gòu)域與肝細胞表面的LDLR的EGF-A域結(jié)合,形成PCSK9/LDLR復(fù)合體,在ARH和網(wǎng)格蛋白介導(dǎo)下啟動內(nèi)吞。復(fù)合體內(nèi)吞后進入核內(nèi)體,酸性的環(huán)境使得LDLR的構(gòu)象發(fā)生改變,無法與PCSK9解離,由此導(dǎo)致LDLR無法循環(huán)到細胞膜表面,而是進入溶酶體降解,進一步降低肝臟對LDL-C的清除,循環(huán)LDL-C隨之上升[7,8,42~44]。

      迄今為止,PCSK9介導(dǎo)LDLR降解的通路才剛剛建立“框架”,而其中的作用過程及作用機制仍然未知。比如,胞內(nèi)途徑的作用甚微,其在什么生理狀況下才被觸發(fā)?具體又有哪些分子調(diào)控?胞外途徑中PCSK9是如何阻止LDLR循環(huán)到質(zhì)膜上?PCSK9/LDLR復(fù)合體又是如何被分選到溶酶體中?筆者通過對PCSK9-LDLR復(fù)合物的分子作用方式的研究,猜想PCSK9/LDLR復(fù)合物內(nèi)吞進入細胞后到內(nèi)化至LDLR的溶酶體內(nèi)降解過程中,可能有一些新的未知基因的參與其中,形成目前未知的通路。另一方面,如若能找到一個小分子可抑制PCSK9/ LDLR復(fù)合物向lysosome的轉(zhuǎn)運即可作為有效的PCSK9抑制劑。

      除了脂質(zhì)代謝外,PCSK9的其他生物學(xué)功能仍知之甚少。并且,PCSK9的基因多效性的生理作用可能會引發(fā)到目前為止進行的試驗中尚未描述的各種副作用[63]。PCSK9在糖尿病、慢性腎病以及癌癥等多種疾病中的作用和機制存在多種猜想和數(shù)據(jù),具體機制也尚無定論。深入研究PCSK9的多效性生理功能和PCSK9決定LDLR命運的分子機制有望為抑制PCSK9的活性提供新的作用靶點,對于高血脂癥和冠心病的預(yù)防和治療及開發(fā)新的降脂藥物具有十分重要的意義。

      [1] Xiao X, Tang JJ, Peng C, Wang Y, Fu L, Qiu ZP, Xiong Y, Yang LF, Cui HW, He XL, Yin L, Qi W, Wong CC, Zhao Y, Li BL, Qiu WW, Song BL. Cholesterol modification of smoothened is required for hedgehog signaling., 2017, 66(1): 154–162.e10.

      [2] Chen LG, Chen XW, Huang X, Song BL, Wang Y, Wang YG. Regulation of glucose and lipid metabolism in health and disease., 2019, 62(11): 1420–1458.

      [3] Klein-Szanto AJP, Bassi DE. Keep recycling going: new approaches to reduce LDL-C., 2019, 164: 336–341.

      [4] Barkas F, Elisaf M, Milionis H. Statins decrease the risk of stroke in individuals with heterozygous familial hypercholesterolemia: a systematic review and meta- analysis., 2015, 243(1): 60–64.

      [5] Tibolla G, Norata GD, Artali R, Meneghetti F, Catapano AL. Proprotein convertase subtilisin/kexin type 9 (PCSK9): from structure-function relation to therapeutic inhibition., 2011, 21(11): 835–843.

      [6] Bays HE, Jones PH, Orringer CE, Brown WV, Jacobson TA. National lipid association annual summary of clinical lipidology 2016., 2016, 10(Suppl.1): S1–S43.

      [7] Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade., 2012, 53(12): 2515–2524.

      [8] Lagace TA. PCSK9 and LDLR degradation., 2014, 25(5): 387–393.

      [9] Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia., 2003, 34(2): 154–156.

      [10] Timms K, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S, Skolnick MH, Hopkins PN, Hunt SC, Shattuck DM. A mutation in PCSK9 causing autosomal- dominant hypercholesterolemia in a Utah pedigree., 2004, 114(4): 349–353.

      [11] Zhang Y, Ma KL. Research progress on the role of PCSK9 in the Regulation of Lipid Metabolism., 2013, 32(4): 473–478.張洋, 馬坤嶺. PCSK9在脂代謝調(diào)節(jié)中作用的研究進展. 東南大學(xué)學(xué)報(醫(yī)學(xué)版), 2013, 32(4): 473–478.

      [12] Wang L, Xu YM, Cheng ZJ, Xiong ZP, Deng LB. The progress of genetics of cholesterol metabolism disorder., 2014, 36(9): 857–863.王立, 徐顏美, 程竹君, 熊招平, 鄧立彬. 膽固醇代謝紊亂的遺傳學(xué)研究進展. 遺傳, 2014, 36(9): 857– 863.

      [13] Seidah NG. PCSK9 as a therapeutic target of dyslipidemia., 2009, 13(1): 19–28.

      [14] Goldstein JL, Brown MS. Familial hypercholesterolemia:identification of a defect in the regulation of 3-Hydroxy- 3-Methylglutaryl coenzyme a reductase activity associated with overproduction of cholesterol., 1973, 70(10): 2804–2808.

      [15] Brown MS, Dana SE, Goldstein JL. Regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia., 1974, 249(3): 789–796.

      [16] Goldstein JL, Brown MS. The LDL receptor., 2009, 29(4): 431–438.

      [17] Dai YF, Sun LY, Zhang XB, Wang LY. Research progression ofmutations in chinese familial hypercholesterolemia., 2011, 33(1): 1–8.代艷芳, 孫立元, 張新波, 王綠婭. 中國人群家族性高膽固醇血癥LDLR基因突變研究進展. 遺傳, 2011, 33(1): 1–8.

      [18] Jeon H, Meng W, Takagi J, Eck MJ, Springer TA, Blacklow SC. Implications for familial hypercholestero-lemia from the structure of the LDL receptor YWTD- EGF domain pair., 2001, 8(6): 499–504.

      [19] Soutar AK. Familial hypercholesterolaemia: Mutations in the gene for the low-density-lipoprotein receptor., 1995, 1(2): 90–97.

      [20] Lin L, Shi AB. Endocytic recycling pathways and the regulatory mechanisms., 2019, 41(6): 451–468.林瓏, 史岸冰. 細胞內(nèi)吞循環(huán)運輸通路及其分子調(diào)控機制. 遺傳, 2019, 41(6): 451–468.

      [21] Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, Fieten H, Wijers M, Levels JH, Huijkman N, Kloosterhuis N, van der Molen H, Brufau G, Groen AK, Elliott AM, Kuivenhoven JA, Plecko B, Grangl G, Mcgaughran J, Horton JD, Burstein E, Hofker MH, van de Sluis B. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL., 2016, 7(10961): 10961.

      [22] Fedoseienko A, Wijers M, Wolters JC, Dekker D, Smit M, Huijkman N, Kloosterhuis N, Klug H, Schepers A, Willems VDK, Levels J, Billadeau DD, Hofker MH, van Deursen J, Westerterp M, Burstein E, Kuivenhoven JA, van de Sluis B. The COMMD family regulates plasma LDL levels and attenuates atherosclerosis through stabilizing the CCC complex in endosomal LDLR trafficking., 2018, 122(12): 1648–1660.

      [23] Yang HX, Zhang M, Long SY, Tuo QH, Tian Y, Chen JX, Zhang CP, Liao DF. Cholesterol in LDL receptor recycling and degradation., 2020, 500: 81–86.

      [24] Henderson R, O'Kane M, Mcgilligan V, Watterson S. The genetics and screening of familial hypercholestero-laemia., 2016, 23(1): 39.

      [25] Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia., 2007, 4(4): 214–225.

      [26] Reiss AB, Shah N, Muhieddine D, Zhen J, Yudkevich J, Kasselman LJ, Deleon J. PCSK9 in cholesterol metabolism: from bench to bedside., 2018, 132(11): 1135–1153.

      [27] Lambert G, Charlton F, Rye KA, Piper DE. Molecular basis of PCSK9 function., 2009, 203(1): 1–7.

      [28] Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease., 2006, 354(12): 1264–1272.

      [29] Bordicchia M, Spannella F, Ferretti G, Bacchetti T, Vignini A, Di Pentima C, Mazzanti L, Sarzani R. PCSK9 is expressed in human visceral adipose tissue and regulated by insulin and cardiac natriuretic peptides., 2019, 20(2): 245.

      [30] Hampton EN, Knuth MW, Li J, Harris JL, Lesley SA, Spraggon G. The self-inhibited structure of full-length PCSK9 at 1.9 a reveals structural homology with resistin within the C-terminal domain., 2007, 104(37): 14604–14609.

      [31] Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, Mansour MN, McGrath KM, Seddon AP, Shenolikar S, Stutzman-Engwall KJ, Warren LC, Xia D, Qiu X. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia., 2007, 14(5): 413–419.

      [32] Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Tebon A, Attie A D, Rader D J, Boileau C, Brissette L, Chrétien M, Prat A, Seidah NG. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol., 2004, 279(47): 48865–48875.

      [33] Naureckiene S, Ma L, Sreekumar K, Purandare U, Lo CF, Huang Y, Chiang LW, Grenier JM, Ozenberger BA, Jacobsen JS, Kennedy JD, Distefano PS, Wood A, Bingham B. Functional characterization of Narc 1, a novel proteinase related to proteinase K., 2003, 420(1): 55–67.

      [34] Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9., 2005, 37(2): 161–165.

      [35] Wang Y, Huang Y, Hobbs HH, Cohen JC. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR., 2012, 53(9): 1932–1943.

      [36] Park SW, Moon Y, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver., 2004, 279(48): 50630–50638.

      [37] Homer VM, Marais AD, Charlton F, Laurie AD, Hurndell N, Scott R, Mangili F, Sullivan DR, Barter PJ, Rye K, George PM, Lambert G. Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa., 2008, 196(2): 659–666.

      [38] Poirier S, Mayer G, Poupon V, Mcpherson PS, Desjardins R, Ly K, Asselin MC, Day R, Duclos FJ, Witmer M, Parker R, Prat A, Seidah NG. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route., 2009, 284(42): 28856–28864.

      [39] Lagace TA, Curtis DE, Garuti R, Mcnutt MC, Park SW, Prather HB, Anderson NN, Ho YK, Hammer RE, Horton JD. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice., 2006, 116(11): 2995–3005.

      [40] Grefhorst A, Mcnutt MC, Lagace TA, Horton JD. Plasma PCSK9 preferentially reduces liver LDL receptors in mice., 2008, 49(6): 1303–1311.

      [41] Momtazi AA, Banach M, Pirro M, Stein EA, Sahebkar A. PCSK9 and diabetes: is there a link?, 2017, 22(6): 883–895.

      [42] Bottomley MJ, Cirillo A, Orsatti L, Ruggeri L, Fisher TS, Santoro JC, Cummings RT, Cubbon RM, Lo Surdo P, Calzetta A, Noto A, Baysarowich J, Mattu M, Talamo F, De Francesco R, Sparrow CP, Sitlani A, Carfí A. Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants., 2009, 284(2): 1313–1323.

      [43] Lo Surdo P, Bottomley MJ, Calzetta A, Settembre EC, Cirillo A, Pandit S, Ni YG, Hubbard B, Sitlani A, Carfí A. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH., 2011, 12(12): 1300–1305.

      [44] Fisher TS, Lo Surdo P, Pandit S, Mattu M, Santoro JC, Wisniewski D, Cummings RT, Calzetta A, Cubbon RM, Fischer PA, Tarachandani A, De Francesco R, Wright SD, Sparrow CP, Carfi A, Sitlani A. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation., 2007, 282(28): 20502–20512.

      [45] Leren TP. Sorting an LDL receptor with bound PCSK9 to intracellular degradation., 2014, 237(1): 76–81.

      [46] Schulz R, Schlüter KD, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9)., 2015, 110(2): 1–19.

      [47] Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism., 2007, 32(2): 71–77.

      [48] Ni YG, Condra JH, Orsatti L, Shen X, Di Marco S, Pandit S, Bottomley MJ, Ruggeri L, Cummings RT, Cubbon RM, Santoro JC, Ehrhardt A, Lewis D, Fisher TS, Ha S, Njimoluh L, Wood DD, Hammond HA, Wisniewski D, Volpari C, Noto A, Lo Surdo P, Hubbard B, Carfí A, Sitlani A. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake., 2010, 285(17): 12882–12891.

      [49] Holla ?L, Cameron J, Berge KE, Ranheim T, Leren TP. Degradation of the LDL receptors by PCSK9 is not mediated by a secreted protein acted upon by PCSK9 extracellularly., 2007, 8(1): 9.

      [50] Poirier S, Mamarbachi M, Chen WT, Lee AS, Mayer G. GRP94 regulates circulating cholesterol levels through blockade of PCSK9-induced LDLR degradation., 2015, 13(10): 2064–2071.

      [51] Rousselet E, Marcinkiewicz J, Kriz J, Zhou A, Hatten ME, Prat A, Seidah NG. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke., 2011, 52(7): 1383–1391.

      [52] Lambert G. Unravelling the functional significance of PCSK9., 2007, 18(3): 304–309.

      [53] Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism., 2009, 50 (Suppl): S172–A177.

      [54] Piper DE, Jackson S, Liu Q, Romanow WG, Shetterly S, Thibault ST, Shan B, Walker NPC. The crystal structure of PCSK9: a regulator of plasma LDL-Cholesterol., 2007, 15(5): 545–552.

      [55] Chen YQ, Wang H, Yu L, Yu XH, Qian YW, Cao GQ, Wang J. Role of ubiquitination in PCSK9-mediated low-density lipoprotein receptor degradation., 2011, 415(3): 515–518.

      [56] Foley EM, Esko JD. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride- rich lipoproteins., 2010, 93: 213–233.

      [57] Gustafsen C, Olsen D, Vilstrup J, Lund S, Reinhardt A, Wellner N, Larsen T, Andersen CBF, Weyer K, Li JP, Seeberger PH, Thirup S, Madsen P, Glerup S. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor., 2017, 8(1): 503.

      [58] Huang MQ, Zhao ZL, Cao QQ, You X, Wei SY, Zhao JY, Bai MJ, Chen Y. PAQR3 modulates blood cholesterol level by facilitating interaction between LDLR and PCSK9., 2019, 94: 88–95.

      [59] Guo WW, You X, Wang X, Wang L, Chen Y. A synthetic peptide hijacks the catalytic subunit of class I PI3K to suppress the growth of cancer cells., 2017, 405: 1–9.

      [60] Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chrétien M. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation., 2003, 100(3): 928–33.

      [61] Dewpura T, Raymond A, Hamelin J, Seidah NG, Mbikay M, Chrétien M, Mayne J. PCSK9 is phosphorylated by a Golgi casein kinase-like kinaseand circulates as a phosphoprotein in humans., 2008, 275(13): 3480–3493.

      [62] Ben Djoudi Ouadda A, Gauthier MS, Susan-Resiga D, Girard E, Essalmani R, Black M, Marcinkiewicz J, Forget D, Hamelin J, Evagelidis A, Ly K, Day R, Galarneau L, Corbin F, Coulombe B, ?aku A, Tagliabracci VS, Seidah NG. Ser-Phosphorylation of PCSK9 (Proprotein convertase Subtilisin-Kexin 9) by Fam20C (Family with sequence similarity 20, member c) kinase enhances its ability to degrade the LDLR (Low- Density lipoprotein receptor)., 2019, 39(10): 1996–2013.

      [63] Cesaro A, Bianconi V, Gragnano F, Moscarella E, Fimiani F, Monda E, Scudiero O, Limongelli G, Pirro M, Calabrò P. Beyond cholesterol metabolism: the pleiotropic effects of proprotein convertase subtilisin/kexin type 9 (PCSK9). Genetics, mutations, expression, and perspective for long‐term inhibition., 2020 Jan 30. doi: 10.1002/biof.1619.

      [64] Maxwell KN, Breslow JL. Adenoviral-Mediated expression of pcsk9 in mice results in a Low-Density lipoprotein receptor knockout phenotype., 2004, 101(18): 7100–7105.

      [65] Ding ZF, Liu SJ, Wang XW, Deng XY, Fan YB, Shahanawaz J, Shmookler RR, Varughese KI, Sawamura T, Mehta JL. Cross-talk between LOX-1 and PCSK9 in vascular tissues., 2015, 107(4): 556–567.

      [66] Kysenius K, Muggalla P, M?tlik K, Arum?e U, Huttunen HJ. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling., 2012, 69(11): 1903–1916.

      [67] Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A, Seidah NG. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1)., 2013, 8(5): e64145.

      [68] Shan LX, Pang L, Zhang RM, Murgolo NJ, Lan H, Hedrick JA. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide., 2008, 375(1): 69–73.

      [69] Demers A, Samami S, Lauzier B, Des Rosiers C, Ngo Sock E, Ong H, Mayer G. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver., 2015, 35(12): 2517–25.

      [70] Labonté P, Begley S, Guévin C, Asselin MC, Nassoury N, Mayer G, Prat A, Seidah NG. PCSK9 impedes hepatitis c virus infection in vitro and modulates liver CD81 expression., 2009, 50(1): 17–24.

      [71] Sharotri V, Collier DM, Olson DR, Zhou R, Snyder PM. Regulation of epithelial sodium channel trafficking by proprotein convertase subtilisin/kexin type 9 (PCSK9)., 2012, 287(23): 19266–19274.

      [72] Poirier S, Prat A, Marcinkiewicz E, Paquin J, Chitramuthu BP, Baranowski D, Cadieux B, Bennett HP, Seidah NG. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system., 2006, 98(3): 838–850.

      [73] Paciullo F, Fallarino F, Bianconi V, Mannarino MR, Sahebkar A, Pirro M. PCSK9 at the crossroad of cholesterol metabolism and immune function during infections., 2017, 232(9): 2330–2338.

      [74] Dwivedi DJ, Grin PM, Khan M, Prat A, Zhou J, Fox-Robichaud AE, Seidah NG, Liaw PC. Differential expression of PCSK9 modulates infection, inflammation, and coagulation in a murine model of sepsis., 2016, 46(6): 672–680.

      [75] Piao MX, Bai JW, Zhang PF, Zhang YZ. PCSK9 regulates apoptosis in human neuroglioma u251 cells via mitochondrial signaling pathways., 2015, 8(3): 2787–2794.

      [76] Wu Q, Tang ZH, Peng J, Liao L, Pan LH, Wu CY, Jiang ZS, Wang GX, Liu LS. The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer’s disease progression (Review)., 2014, 2(2): 167–171.

      [77] Dron JS, Hegele RA. Complexity of mechanisms among human proprotein convertase subtilisin-kexin type 9 variants., 2017, 28(2): 161–169.

      [78] Cameron J, Holla ?L, Ranheim T, Kulseth MA, Berge KE, Leren TP. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors., 2006, 15(9): 1551–1558.

      [79] Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, Awan Z, Barreto GE, Sahebkar A. PCSK9 and inflammation: a review of experimental and clinical evidence., 2019, 5(4): 237–245.

      [80] Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the united states., 2013, 41(5): 1167–1174.

      [81] Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, Christie JD, Nakada TA, Fjell CD, Thair SA, Cirstea MS, Boyd JH. PCSK9 is a critical regulator of the innate immune response and septic shock outcome., 2014, 6(258): 258ra143.

      [82] Topchiy E, Cirstea M, Kong HJ, Boyd JH, Wang Y, Russell JA, Walley KR. Lipopolysaccharide is cleared from the circulation by hepatocytesthe low density lipoprotein receptor., 2016, 11(5): e0155030.

      [83] Li J, Liang X, Wang YY, Xu Z, Li GP. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis., 2017, 16(2): 1817–1825.

      [84] Gan SS, Ye JQ, Lei W, Qu FJ, Chu CM, Tian YJ, Yang W, Cui XG. Inhibition of PCSK9 protects against radiation-induced damage of prostate cancer cells., 2017, 10: 2139–2146.

      [85] Athavale D, Chouhan S, Pandey V, Mayengbam SS, Singh S, Bhat MK. Hepatocellular carcinoma-associated hypercholesterolemia: involvement of proprotein- convertase-subtilisin-kexin type-9 (PCSK9)., 2018, 6(1): 16.

      [86] Sun X, Essalmani R, Day R, Khatib AM, Seidah NG, Prat A. Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver., 2012, 14(12): 1122–1231.

      [87] Nowak C, ?rnl?v J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk., 2018, 9(1): 3957.

      [88] Lakoski SG, Lagace TA, Cohen JC, Horton JD, Hobbs HH. Genetic and metabolic determinants of plasma PCSK9 levels., 2009, 94(7): 2537–2543.

      [89] Lotta LA, Sharp SJ, Burgess S, Perry JRB, Stewart ID, Willems SM, Luan JA, Ardanaz E, Arriola L, Balkau B, Boeing H, Deloukas P, Forouhi NG, Franks PW, Grioni S, Kaaks R, Key TJ, Navarro C, Nilsson PM, Overvad K, Palli D, Panico S, Quirós J, Riboli E, Rolandsson O, Sacerdote C, Salamanca EC, Slimani N, Spijkerman AMW, Tjonneland A, Tumino R, van der A DL, van der Schouw YT, Mccarthy MI, Barroso I, O'Rahilly S, Savage DB, Sattar N, Langenberg C, Scott RA, Wareham NJ. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: A Meta-analysis., 2016, 316(13): 1383– 1391.

      [90] Bonnefond A, Yengo L, Le May C, Fumeron F, Marre M, Balkau B, Charpentier G, Franc S, Froguel P, Cariou B, DESIR study group. The loss-of-function PCSK9 p.R46L genetic variant does not alter glucose homeostasis., 2015, 58(9): 2051–2055.

      [91] Nekaies Y, Baudin B, Kelbousi S, Sakly M, Attia N. Plasma proprotein convertase subtilisin/kexin type 9 is associated with Lp(a) in type 2 diabetic patients., 2015, 29(8): 1165–1170.

      [92] Konarzewski M, Szolkiewicz M, Sucajtys-Szulc E, Blaszak J, Lizakowski S, Swierczynski J, Rutkowski B. Elevated circulating PCSK9 concentration in renal failure patients is corrected by renal replacement therapy., 2014, 40(2): 157–163.

      [93] Morena M, Le May C, Chenine L, Arnaud L, Dupuy AM, Pichelin M, Leray-Moragues H, Chalabi L, Canaud B, Cristol JP, Cariou B. Plasma PCSK9 concentrations during the course of nondiabetic chronic kidney disease: relationship with glomerular filtration rate and lipid metabolism., 2017, 11(1): 87–93.

      [94] Seidah NG, Abifadel M, Prost S, Boileau C, Prat A. The proprotein convertases in hypercholesterolemia and cardiovascular diseases: emphasis on proprotein convertase subtilisin/kexin 9., 2017, 69(1): 33–52.

      [95] Tomlinson, Hu M, Zhang Y, Chan P, Liu ZM. Alirocumab for the treatment of hypercholesterolemia., 2017, (17): 115–128.

      [96] Cicero AF, Colletti A, Borghi C. Profile of evolocumab and its potential in the treatment of hyperlipidemia., 2015, 9: 3073–3082.

      [97] Valerio MG, Velayati A, Jain D, Aronow WS. Promising new therapies for the treatment of hypercholesterolemia., 2016, 16(5): 609–618.

      [98] Wiciński M, ?ak J, Malinowski B, Popek G, Grze?k G. PCSK9 signaling pathways and their potential importance in clinical practice., 2017, 8(4): 391–402.

      [99] Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan YP, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, R?hl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de Fougerolles A, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates., 2008, 105(33): 11915– 11920.

      [100] Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, Hall T, Troquay RPT, Turner T, Visseren FLJ, Wijngaard P, Wright RS, Kastelein JJ. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol., 2017, 376(15): 1430–1440.

      [101] Lindholm MW, Elmén J, Fisker N, Hansen HF, Persson R, M?ller MR, Rosenbohm C, ?rum H, Straarup EM, Koch T. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates., 2012, 20(2): 376–381.

      [102] Schulz R, Schlüter KD. PCSK9 targets important for lipid metabolism., 2017, 12(S1): 2–11.

      [103] Zhang YN, Eigenbrot C, Zhou LJ, Shia S, Li W, Quan C, Tom J, Moran P, Di Lello P, Skelton NJ, Kong-Beltran M, Peterson A, Kirchhofer D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor., 2014, 289(2): 942–955.

      [104] Seidah NG. Insights into a PCSK9 structural groove: a harbinger of new drugs to reduce LDL-cholesterol., 2017, 24(10): 785–786.

      [105] Seidah NG, Prat A, Pirillo A, Catapano AL, Norata GD. Novel strategies to target proprotein convertase subtilisin kexin 9: Beyond monoclonal antibodies., 2019, 115(3): 510–518.

      [106] Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttensch?n H, Mors O, Bentzon JF, Madsen P, Nykjaer A, Glerup S. The hypercholestero-lemia-risk gene SORT1 facilitates PCSK9 secretion., 2014, 19(2): 310–318.

      [107] Xia Huasong, Wu Yanqing. Research progress of PCSK9 inhibitors., 2018, 2 (34): 108–112.夏華松, 吳延慶. PCSK9抑制劑研究進展. 臨床心血管病雜志, 2018, 34(2): 108–112.

      [108] Mbikay M, Sirois F, Simoes S, Mayne J, Chrétien M. Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture., 2014, 4(1): 755–762.

      [109] Giugliano RP, Pedersen TR, Park J, De Ferrari GM, Gaciong ZA, Ceska R, Toth K, Gouni-Berthold I, Lopez-Miranda J, Schiele F, Mach F, Ott BR, Kanevsky E, Pineda AL, Somaratne R, Wasserman SM, Keech AC, Sever PS, Sabatine MS. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial., 2017, 390(10106): 1962–1971.

      Progress on the molecular mechanisms of PCSK9-mediated degradation of low density lipoprotein receptor

      Yuxian Wu, Yan Wang

      Elevated serum level of low density lipoprotein cholesterol (LDL-C) is the leading risk factor for cardiovascular disease. LDL receptor (LDLR)-mediated LDL clearance is the major factor determining the LDL-C level in the circulation. LDL binds to the LDLR on the cell surface and enters the cells through classical clathrin-coated vesicles. In the acidic endosome, LDLR is uncoupled from LDL and recycles back to the cell surface. The released LDL is transported to the lysosome for degradation. The proprotein convertase subtilisin kexin type 9 (PCSK9) gene encodes a hepatic secretory protein, and its mutations are strongly associated with levels of LDL-C. We and others have shown that PCSK9 directly interacts with LDLR on the cell surface and both are internalized through the clathrin-coated vesicles. However, in the acidic endosome, PCSK9 and LDLR form a tight complex and are targeted to lysosome for degradation, thereby reducing the level of LDLR on the surface of hepatocytes and decreasing hepatic clearance of LDL-C, which plays an important role in maintaining a relatively constant level of LDL in the plasma. Thus, blocking PCSK9 function has become a new strategy to treat hypercholesterolemia.In this review, we will summarize the latest progress in the functional and mechanistic studies of PCSK9 and also highlight the research progress of PCSK9 inhibitors. It aims to provide a reference for the study of PCSK9-LDLR pathway and the regulation of cholesterol metabolism.

      LDL-C; LDL receptor; PCSK9; endocytosis; PCSK9 inhibitor

      2020-04-06;

      2020-05-20

      國家自然科學(xué)基金項目(編號:91754101)資助[Supported by the National Natural Science Foundation of China (No. 91754101)]

      吳玉嫻,在讀碩士研究生,專業(yè)方向:生物化學(xué)與分子生物學(xué)。E-mail: 2017202040140@whu.edu.cn

      王琰,博士,教授,博士生導(dǎo)師,研究方向:脂類代謝。E-mail: Wang.y@whu.edu.cn

      10.16288/j.yczz.20-065

      2020/5/22 14:31:00

      URI: http://kns.cnki.net/kcms/detail/11.1913.R.20200522.1111.001.html

      (責任編委: 史岸冰)

      猜你喜歡
      溶酶體結(jié)構(gòu)域血癥
      高尿酸血癥的治療
      中老年保健(2021年4期)2021-08-22 07:07:36
      溶酶體功能及其離子通道研究進展
      生物化工(2021年2期)2021-01-19 21:28:13
      溶酶體及其離子通道研究進展
      生物化工(2020年1期)2020-02-17 17:17:58
      高中階段有關(guān)溶酶體的深入分析
      讀與寫(2019年35期)2019-11-05 09:40:46
      認識高氨血癥
      蛋白質(zhì)結(jié)構(gòu)域劃分方法及在線服務(wù)綜述
      論“血不利則為水”在眼底血癥中的應(yīng)用探討
      淺談溶酶體具有高度穩(wěn)定性的原因
      重組綠豆BBI(6-33)結(jié)構(gòu)域的抗腫瘤作用分析
      組蛋白甲基化酶Set2片段調(diào)控SET結(jié)構(gòu)域催化活性的探討
      将乐县| 肃宁县| 日照市| 台北市| 栖霞市| 亳州市| 大同县| 年辖:市辖区| 牙克石市| 鄂尔多斯市| 阳城县| 巢湖市| 怀柔区| 平武县| 佛坪县| 广灵县| 阿克苏市| 九寨沟县| 克山县| 高州市| 长沙县| 安陆市| 长沙县| 海阳市| 高碑店市| 鄄城县| 丹寨县| 五峰| 泰顺县| 内黄县| 灵宝市| 衢州市| 长葛市| 临朐县| 双峰县| 德清县| 广丰县| 邵阳县| 海淀区| 绵竹市| 札达县|