• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      辣椒遺傳轉(zhuǎn)化研究進(jìn)展

      2024-02-14 00:00:00張宏冠許晴趙紅杰胡博文
      江蘇農(nóng)業(yè)科學(xué) 2024年24期
      關(guān)鍵詞:遺傳轉(zhuǎn)化轉(zhuǎn)化策略辣椒

      摘要:辣椒(Capsicum annuum L.)作為一種重要的香料和蔬菜作物,具有巨大的經(jīng)濟(jì)價(jià)值。隨著辣椒的需求量逐漸增大,育種目標(biāo)也逐漸豐富,單純依靠傳統(tǒng)育種已無(wú)法滿足人們的需求。分子育種是辣椒高效育種的有效途徑,遺傳轉(zhuǎn)化技術(shù)是分子育種的核心,更是補(bǔ)充傳統(tǒng)育種和加快辣椒改良的有力工具。由于辣椒具有較高的基因型依賴性和遺傳轉(zhuǎn)化頑拗性,只采用經(jīng)典遺傳轉(zhuǎn)化策略獲取陽(yáng)性植株的概率渺茫。因此,基于經(jīng)典遺傳轉(zhuǎn)化策略的拓展或是新策略的開(kāi)發(fā),對(duì)于推進(jìn)辣椒遺傳轉(zhuǎn)化研究十分必要。本文重點(diǎn)圍繞近5年來(lái)遺傳轉(zhuǎn)化策略的拓展開(kāi)發(fā),從辣椒功能解析的常用手段出發(fā),就辣椒遺傳轉(zhuǎn)化的現(xiàn)有情況、可供參考的高效轉(zhuǎn)化策略進(jìn)行綜述,并且針對(duì)辣椒遺傳轉(zhuǎn)化的難點(diǎn)總結(jié)相應(yīng)的策略,包括植物發(fā)育調(diào)節(jié)因子策略、病毒載體遞送策略、原生質(zhì)體轉(zhuǎn)化策略及其他物種中可供參考的轉(zhuǎn)化策略?;谝延械难芯浚雇死苯愤z傳轉(zhuǎn)化策略的進(jìn)一步開(kāi)發(fā),為辣椒功能基因研究和分子育種提供理論支撐。

      關(guān)鍵詞:辣椒;植物再生;遺傳轉(zhuǎn)化;轉(zhuǎn)化策略;功能驗(yàn)證

      中圖分類號(hào):S641.303" 文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):1002-1302(2024)24-0017-06

      收稿日期:2023-11-10

      基金項(xiàng)目:湖南重點(diǎn)研發(fā)計(jì)劃(編號(hào):2023NK2006);湖南農(nóng)業(yè)大學(xué)研究生科研創(chuàng)新項(xiàng)目(編號(hào):2023CX102);國(guó)家自然科學(xué)基金(編號(hào):32002040)。

      作者簡(jiǎn)介:張宏冠(1998—),男,山東濟(jì)寧人,碩士研究生,研究方向?yàn)槔苯贩肿釉O(shè)計(jì)育種。E-mail:871271896@qq.com。

      通信作者:胡博文,博士,副教授,主要從事辣椒分子設(shè)計(jì)育種研究。E-mail:hubowen.cap@aliyun.com。

      辣椒(Capsicum annuum L.)作為我國(guó)的重要蔬菜,年總產(chǎn)量可達(dá)6 400多萬(wàn)t,農(nóng)業(yè)產(chǎn)值達(dá)2 500億元,是我國(guó)經(jīng)濟(jì)價(jià)值最高的蔬菜,辣椒產(chǎn)業(yè)更是助農(nóng)增收、鄉(xiāng)村振興的支柱產(chǎn)業(yè)[1。種業(yè)是農(nóng)業(yè)產(chǎn)業(yè)的 “芯片”,更是作物高產(chǎn)、高質(zhì)的重要保障[2。隨著環(huán)境的變化,生物與非生物脅迫嚴(yán)重限制了辣椒的產(chǎn)量與質(zhì)量,因此加強(qiáng)辣椒優(yōu)良種質(zhì)研究與創(chuàng)新已迫在眉睫[3-4。傳統(tǒng)的辣椒育種提高了辣椒產(chǎn)量與質(zhì)量,但選育周期長(zhǎng)、雜交不稔、遺傳性狀不穩(wěn)定等因素使得該技術(shù)存在較大的局限性,阻礙了辣椒育種的進(jìn)展,難以滿足人民的需求5。分子育種為辣椒育種開(kāi)辟了一條新的道路,通過(guò)植物遺傳轉(zhuǎn)化和以此為基礎(chǔ)的基因編輯技術(shù)提高育種效率、創(chuàng)制傳統(tǒng)育種方法難以實(shí)現(xiàn)的種質(zhì),可為優(yōu)良品種的選育提供保障6-7。

      遺傳轉(zhuǎn)化技術(shù)和以此為基礎(chǔ)的基因編輯技術(shù)是分子育種的關(guān)鍵,通過(guò)該項(xiàng)技術(shù)可以實(shí)現(xiàn)目標(biāo)基因的增加或改變,從而達(dá)到育種目的[8?,F(xiàn)如今,許多具有已知重要功能的辣椒基因,如果色相關(guān)基因、風(fēng)味相關(guān)基因、對(duì)生物脅迫與非生物脅迫的抗性基因,被分離和表征,但因遺傳轉(zhuǎn)化體系限制,包括高度再生頑固、轉(zhuǎn)化效率低等,辣椒分子育種進(jìn)程緩慢9-13。遺傳轉(zhuǎn)化技術(shù)或是以此為基礎(chǔ)的基因編輯技術(shù),對(duì)已定位或是克隆到的基因進(jìn)行鑒定和功能解析具有重要意義,因此高效遺傳轉(zhuǎn)化體系的建立對(duì)于功能基因研究和分子育種更是至關(guān)重要。本文針對(duì)辣椒遺傳轉(zhuǎn)化的難點(diǎn)如再生困難、轉(zhuǎn)化效率低等問(wèn)題與相應(yīng)的解決策略進(jìn)行了綜述,并綜述了可供辣椒遺傳轉(zhuǎn)化參考的高效轉(zhuǎn)化策略,以期為辣椒高效遺傳轉(zhuǎn)化體系建立、分子育種效率提高提供理論支撐。

      1 辣椒功能基因解析現(xiàn)狀

      辣椒基因組的公布與泛基因組的建立為優(yōu)良基因的篩選提供了便利,隨著測(cè)序技術(shù)的進(jìn)步與成本的降低,辣椒基因被不斷預(yù)測(cè),如抗性基因、育性基因與辣椒素合成相關(guān)基因等。然而,辣椒基因功能驗(yàn)證的方法匱乏,主要原因在于高效遺傳轉(zhuǎn)化體系在辣椒中尚未建立,雖然有成功將外源基因?qū)氲膱?bào)道,但是轉(zhuǎn)化效率低、重復(fù)性差等問(wèn)題限制了其廣泛的應(yīng)用[14。

      目前,辣椒基因功能驗(yàn)證的方法主要集中在病毒誘導(dǎo)的基因沉默(virus induced gene silencing,VIGS)和在其他有成熟轉(zhuǎn)化體系的物種中進(jìn)行異源超表達(dá)(表1)。這些方法有自身的局限性,如煙草脆裂病毒(tobacco rattle virus,TRV)在辣椒中已被用作VIGS載體,可在辣椒中誘導(dǎo)系統(tǒng)性壞死,進(jìn)而使得與防御和凋亡相關(guān)的應(yīng)答基因難以被表征,相應(yīng)的表型也難以分辨,同時(shí),基因的異源超表達(dá)受到可轉(zhuǎn)化物種的限制,導(dǎo)致表型與預(yù)期有偏差。辣椒的遺傳轉(zhuǎn)化壁壘是研究其基因組學(xué)的嚴(yán)重限制,使其基因組學(xué)研究落后于其他茄科植物[9,29 。

      2 辣椒遺傳轉(zhuǎn)化現(xiàn)狀

      2.1 植物發(fā)育調(diào)節(jié)因子促進(jìn)辣椒再生

      植物的離體再生能力制約了高效遺傳轉(zhuǎn)化體系的建立,常規(guī)的植物轉(zhuǎn)化需要優(yōu)化外部因素,如選擇特定的植物基因型、調(diào)整植物生長(zhǎng)調(diào)節(jié)劑比例 (主要是調(diào)整合適的生長(zhǎng)素和細(xì)胞分裂素比例,用于改變植物生長(zhǎng))。植物發(fā)育調(diào)節(jié)因子,如Baby boom(BBM)、Wuschel(WUS)、PLETHORA(PLT)、GROWTH-REGULATING FACTOR4-GRF INTERACTING FACTOR1(GRF4-GIF1)、Wuschel-related homeobox(WOX),參與了生長(zhǎng)素和細(xì)胞分裂素的合成途徑,調(diào)控植物的再生過(guò)程,現(xiàn)已被證明能促進(jìn)植物高效遺傳轉(zhuǎn)化并擴(kuò)大可轉(zhuǎn)化物種和基因型的范圍[30-33。2016年玉米BBM與WUS2的異位共表達(dá)促進(jìn)了玉米、高粱、水稻、甘蔗體細(xì)胞胚的發(fā)生,并提高了農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化效率[34;2017年BBM與WUS2的異位共表達(dá)解決了頑拗性玉米B73的遺傳轉(zhuǎn)化問(wèn)題[35;2020年GRF4-GIF1融合蛋白的表達(dá)擴(kuò)大了小麥可轉(zhuǎn)化基因型的范圍,并提高了雙子葉植物柑橘的再生效率[36;2021年GRF4-GIF1融合蛋白通過(guò)突變mi396位點(diǎn),在西瓜中實(shí)現(xiàn)了高效遺傳轉(zhuǎn)化[37;2022年TaWOX5的過(guò)表達(dá)克服了小麥遺傳轉(zhuǎn)化的基因型依賴,并實(shí)現(xiàn)了高效遺傳轉(zhuǎn)化[38

      辣椒具有基因型依賴和再生頑拗性,只采用經(jīng)典遺傳轉(zhuǎn)化策略獲得陽(yáng)性植株的概率渺茫,植物發(fā)育調(diào)節(jié)因子的使用是促進(jìn)辣椒高效遺傳轉(zhuǎn)化的有效途徑。2011年,Heidmann等開(kāi)發(fā)了一種經(jīng)典遺傳轉(zhuǎn)化策略結(jié)合植物發(fā)育調(diào)節(jié)因子的轉(zhuǎn)化再生系統(tǒng),使用帶有BBM基因的根癌農(nóng)桿菌侵染甜椒子葉外植體,被轉(zhuǎn)化甜椒在含有10 μmol/L 地塞米松(DEX)、1 mg/L 噻苯?。═DZ)或10 μmol/L DEX+1 mg/L TDZ的MS培養(yǎng)基上能誘導(dǎo)出豐富的體細(xì)胞胚,最終生根并獲得完整植株[39。2022年,Lian等使用同樣的策略,利用PLT5基因的表達(dá)提高了辣椒遺傳轉(zhuǎn)化效率,從0提升至3.8%[40。

      2.2 病毒遞送系統(tǒng)提高遞送效率

      經(jīng)典遺傳轉(zhuǎn)化在大多數(shù)植物中的轉(zhuǎn)化效率低,其主要原因在于普通質(zhì)粒載體遞送效率低,因此如何將外源DNA高效遞送至植物體內(nèi)成為新的難題[41。病毒載體介導(dǎo)的遞送系統(tǒng)是一條有效途徑,病毒載體的遞送效率高,且具有靶向性和廣適性,是基于各種宿主植物研究基因功能的有利工具。病毒誘導(dǎo)的基因編輯(virus induced genome editing,VIGE)和病毒誘導(dǎo)的基因沉默(virus induced gene silencing,VIGS)已經(jīng)發(fā)展成為許多轉(zhuǎn)化困難物種中基因功能驗(yàn)證的重要方法,其中最值得關(guān)注的就是VIGE[42-43。2015年,甘藍(lán)曲葉病毒(cabbage leaf curl virus,CaLCuV)通過(guò)VIGE技術(shù)系統(tǒng)感染了煙草,并編輯掉了八氫番茄紅素脫氫酶(phytoene desaturase,PDS),新生葉產(chǎn)生了漂白表型[44。2017年,小麥矮病毒(wheat dwarf virus,WDV)VIGE遞送系統(tǒng)被開(kāi)發(fā),對(duì)水稻進(jìn)行了高效基因編輯[45 。值得注意的是,一些陽(yáng)性RNA病毒,如煙草脆裂病毒(tobacco rattle virus,TRV)可以將sgRNA傳遞到生殖細(xì)胞或是分生組織中[46。2020年,TRV-VIGE遞送系統(tǒng)被開(kāi)發(fā),在煙草中實(shí)現(xiàn)了高效基因編輯和穩(wěn)定遺傳,在被病毒感染的植物后代中有30%在三靶中檢測(cè)到突變[47。同年,苦苣菜黃網(wǎng)病毒(sonchus yellow net virus,SYNV)VIGE遞送系統(tǒng)被開(kāi)發(fā),在煙草中實(shí)現(xiàn)高效基因編輯并且實(shí)現(xiàn)了穩(wěn)定遺傳,在被感染病毒的植物后代中有57%存在突變,并且可繞過(guò)組織培養(yǎng),進(jìn)行穩(wěn)定的機(jī)械傳播[48。

      辣椒尚未建立高效遺傳轉(zhuǎn)化體系,導(dǎo)入或編輯基因的手段仍然局限于經(jīng)典遺傳轉(zhuǎn)化,高效轉(zhuǎn)化對(duì)于研究辣椒功能基因意義重大,基于病毒高效遞送系統(tǒng),繞過(guò)經(jīng)典遺傳轉(zhuǎn)化的復(fù)雜操作從而提升轉(zhuǎn)化效率,對(duì)加速辣椒分子設(shè)計(jì)育種及創(chuàng)制優(yōu)良品種至關(guān)重要。2023年,番茄斑點(diǎn)枯萎病毒(tomato spotted wilt virus,TSWV)VIGE高效遞送系統(tǒng)被開(kāi)發(fā),該系統(tǒng)具有宿主范圍廣、攜帶容量大且能夠進(jìn)行系統(tǒng)性感染等特點(diǎn),對(duì)于一些難以轉(zhuǎn)化的植物來(lái)說(shuō),TSWV克服了基因遞送效率與基因型依賴的瓶頸,TSWV系統(tǒng)性地感染了辣椒的多種基因型,并且實(shí)現(xiàn)了40%的編輯效率[49。TSWV在辣椒中克服了基因遞送瓶頸問(wèn)題,但仍然存在一定的局限性,如無(wú)法感染到生殖細(xì)胞、難以繞過(guò)離體再生,目前,VIGS仍是辣椒研究功能基因組學(xué)的常用技術(shù)。TRV介導(dǎo)的VIGS技術(shù)常用于辣椒中,但是沉默效率不穩(wěn)定,仍需要被進(jìn)一步優(yōu)化。2021年,帶有C2b基因的TRV載體被開(kāi)發(fā),TRV感染后 5個(gè)辣椒品種果實(shí)表型明顯,隨后的定量數(shù)據(jù)證明了基因沉默的高效性,TRV-C2b為VIGS技術(shù)提供了高效的載體,并有助于辣椒整個(gè)生命周期的基因功能研究[50。接種TRV病毒后表現(xiàn)出的癥狀,如壞死、變黃、發(fā)育遲緩,可能會(huì)影響辣椒基因功能的系統(tǒng)分析[51,因此,蠶豆萎蔫病毒2號(hào)(broad bean wilt virus 2,BBWV2)被開(kāi)發(fā),BBWV2病毒載體介導(dǎo)的VIGS不會(huì)引起辣椒明顯的病毒癥狀,且BBWV2與異源病毒抑制子共表達(dá),增強(qiáng)了重組蛋白表達(dá)的穩(wěn)定性[15。

      2.3 辣椒原生質(zhì)體遞送系統(tǒng)被開(kāi)發(fā)

      許多植物因遺傳轉(zhuǎn)化技術(shù)壁壘阻礙了其分子機(jī)理的研究,因此,一種分析分子過(guò)程的材料需要被開(kāi)發(fā)。使用原生質(zhì)體被認(rèn)為是一種簡(jiǎn)便有效的辦法,因其沒(méi)有細(xì)胞壁且易吸收外源物質(zhì)被廣泛用于遺傳轉(zhuǎn)化和以此為基礎(chǔ)的基因編輯[52-53,同時(shí)具有試驗(yàn)周期短、轉(zhuǎn)化效率高、脫靶率低的優(yōu)勢(shì)54-55。在植物進(jìn)行基因編輯之前,使用原生質(zhì)體通過(guò)核糖核蛋白復(fù)合物(RNP)遞送系統(tǒng)來(lái)確定目標(biāo)基因的編輯效率,對(duì)于建立了再生系統(tǒng)的植物可以進(jìn)一步產(chǎn)生基因編輯植物。2020年,使用RNP遞送系統(tǒng)對(duì)橡膠樹(shù)原生質(zhì)體完成了基因編輯,編輯效率為70%[56。2021年,使用RNP遞送系統(tǒng)對(duì)輻射松原生質(zhì)體完成了基因編輯,隨后使用被編輯后的原生質(zhì)體產(chǎn)生了再生苗[57。2023年,使用RNP遞送系統(tǒng)對(duì)葡萄原生質(zhì)體進(jìn)行了基因編輯,隨后通過(guò)體細(xì)胞胚的發(fā)生途徑獲得了被編輯后的完整植株[58。

      辣椒遺傳轉(zhuǎn)化困難,以此為基礎(chǔ)的基因編輯技術(shù)在之前未曾被報(bào)道,近幾年有了突破。2020年,使用RNP遞送系統(tǒng)對(duì)辣椒原生質(zhì)體進(jìn)行了基因編輯,并獲得了19.3%的編輯效率,為辣椒創(chuàng)制了首個(gè)基因編輯系統(tǒng)[59。然而,辣椒原生質(zhì)體的再生系統(tǒng)尚未被報(bào)道,如何獲得再生植株仍需進(jìn)一步的探索。

      3 高效轉(zhuǎn)化策略為提升辣椒遺傳轉(zhuǎn)化效率提供參考

      3.1 可移動(dòng)RNA的應(yīng)用

      載體遞送效率低與轉(zhuǎn)化后再生困難是辣椒遺傳轉(zhuǎn)化的重要限制因素[9。病毒遞送系統(tǒng)的使用、植物發(fā)育調(diào)節(jié)因子共表達(dá)有效地解決了這些困難,但是這些方法仍不夠完善,如病毒遞送系統(tǒng)無(wú)法侵染到生殖器官,陽(yáng)性苗的獲得繞不開(kāi)組織培養(yǎng);植物發(fā)育調(diào)節(jié)因子WUS、BBM過(guò)表達(dá)產(chǎn)生的轉(zhuǎn)基因植物表型出了異常的表型,如根尖卷曲、葉片扭曲或是下胚軸膨脹等[60。因此,辣椒遺傳轉(zhuǎn)化策略開(kāi)發(fā)工作依舊充滿挑戰(zhàn)。

      盡管有新策略被開(kāi)發(fā),辣椒遺傳轉(zhuǎn)化仍然受限于組織培養(yǎng),近幾年其他物種的轉(zhuǎn)化策略為辣椒遺傳轉(zhuǎn)化提供了參考(圖1)。2023年,一種基于tRNA-like sequence(TLS)的基因編輯傳遞方法被開(kāi)發(fā),該方法使用砧木嫁接法將可移動(dòng)的TLS從轉(zhuǎn)基因供體轉(zhuǎn)移到兼容的野生型受體植物中,從而在當(dāng)代獲得純合編輯的植株[61。這種繞過(guò)組織培養(yǎng)、省略雜交和自交步驟獲得純合編輯植株的方案,對(duì)加速優(yōu)良品種培育意義重大。2022年,番茄與辣椒嫁接關(guān)鍵調(diào)控因子WOX4被鑒定且番茄有穩(wěn)定的轉(zhuǎn)化體系,該研究為辣椒嫁接攜帶TLS基因編輯的番茄供體提供了可能[62。

      3.2 葉綠體轉(zhuǎn)化體系的應(yīng)用

      葉綠體轉(zhuǎn)化與主流的核轉(zhuǎn)化相比具有外源基因表達(dá)量高、無(wú)位置效應(yīng)、無(wú)花粉漂移、有多基因共表達(dá)元件等優(yōu)勢(shì)[63。2019年,一種具有廣適性的葉綠體轉(zhuǎn)化方法被開(kāi)發(fā),該方法使用納米顆粒系統(tǒng)轉(zhuǎn)化植物,研究人員在葉片表面下方使用注射法將顆粒通過(guò)氣孔注入葉片,進(jìn)入葉片內(nèi)部后,納米顆粒會(huì)穿過(guò)細(xì)胞壁、細(xì)胞膜,最終穿過(guò)葉綠體的雙層膜,進(jìn)入葉綠體后,葉綠體的弱酸性環(huán)境會(huì)促使 DNA從納米顆粒中釋放出來(lái)。隨后,研究人員在菠菜、煙草、芝麻和擬南芥中進(jìn)行了測(cè)試,利用黃色熒光蛋白進(jìn)行驗(yàn)證,結(jié)果表明,47%的植物細(xì)胞可表達(dá)黃色熒光蛋白[64。在高等植物中,茄科植物是進(jìn)行葉綠體轉(zhuǎn)化成功最多的,且該方案不需要組織培養(yǎng),該研究為辣椒遺傳轉(zhuǎn)化新策略開(kāi)發(fā)提供了參考65。

      4 展望

      目前辣椒基因功能驗(yàn)證的手段多為VIGS或是異源超表達(dá),通過(guò)遺傳轉(zhuǎn)化手段的報(bào)道較少,近幾年新開(kāi)發(fā)的轉(zhuǎn)化策略對(duì)辣椒基因組學(xué)研究、優(yōu)良品種培育有巨大的價(jià)值,綜合已有的研究,未來(lái)的研究可以在以下4個(gè)方面進(jìn)一步延伸:(1)植物發(fā)育調(diào)節(jié)因子組合使用可能會(huì)有累加的作用進(jìn)而促進(jìn)外植體再生,如GRF-GIF促進(jìn)單子葉與雙子葉植物的再生、BBM-WUS促進(jìn)單子葉植物體細(xì)胞胚發(fā)生[36,40 。因此,可以利用多組學(xué)聯(lián)合分析技術(shù)進(jìn)一步挖掘與植物再生相關(guān)的基因,并單獨(dú)或組合測(cè)試其在辣椒中的轉(zhuǎn)化效率。(2)病毒遞送系統(tǒng)提高了辣椒的轉(zhuǎn)化,然而大多數(shù)病毒無(wú)法感染到生殖細(xì)胞或是分生組織無(wú)法穩(wěn)定遺傳至下一代,因此無(wú)法繞過(guò)組織培養(yǎng),離體再生這一瓶頸依然存在[49。植物發(fā)育調(diào)節(jié)因子共接種增加了被編輯外植體再生的可能,而使用病毒遞送系統(tǒng)結(jié)合植物發(fā)育調(diào)節(jié)因子共接種,在提升遞送效率的同時(shí)增加了再生的可能性66。(3)Flowering Locus T(FT) 融合sgRNA在TRV載體中被證明可移動(dòng)到頂端分生組織和花組織[67。這意味著通過(guò)病毒遞送系統(tǒng),可以獲得無(wú)需組織培養(yǎng)的轉(zhuǎn)基因苗。然而病毒的容載量(通常小于1 kb)限制了基因編輯組件的遞送,如Cas9蛋白(大小為4 kb),TSWV的大容載量解決了這一問(wèn)題,因此TSWV融合可移動(dòng)RNA元件如FT,可能有助于基因編輯植物的獲得[68。(4)參考繞過(guò)組織培養(yǎng)的遺傳轉(zhuǎn)化策略,開(kāi)發(fā)出新的方案如TLS、葉綠體轉(zhuǎn)化等。

      參考文獻(xiàn):

      [1]吳永紅,周書(shū)棟,李雪峰,等. 2019年辣椒科學(xué)研究進(jìn)展[J]. 辣椒雜志,2020,18(2):1-7,13.

      [2]林 巧,辛竹琳,孔令博,等. 我國(guó)辣椒產(chǎn)業(yè)發(fā)展現(xiàn)狀及育種應(yīng)對(duì)措施[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,28(5):82-95.

      [3]Meng Y C,Zhang H F,Pan X X,et al. CaDHN3,a pepper (Capsicum annuum L.) dehydrin gene enhances the tolerance against salt and drought stresses by reducing ROS accumulation[J]. International Journal of Molecular Sciences,2021,22(6):3205.

      [4]鄒學(xué)校,馬艷青,戴雄澤,等. 辣椒在中國(guó)的傳播與產(chǎn)業(yè)發(fā)展[J]. 園藝學(xué)報(bào),2020,47(9):1715-1726.

      [5]Martins K C,Pereira T N S,Souza S A M,et al. Crossability and evaluation of incompatibility barriers in crosses between Capsicum species[J]. Crop Breeding and Applied Biotechnology,2015,15(3):139-145.

      [6]Krishna H,Alizadeh M,Singh D,et al. Somaclonal variations and their applications in horticultural crops improvement[J]. 3 Biotech,2016,6(1):54.

      [7]Karthik S,Pavan G,Prasanth A,et al. Improved in planta genetic transformation efficiency in bitter gourd (Momordica charantia L.)[J]. In Vitro Cellular amp; Developmental Biology-Plant,2021,57(2):190-201.

      [8]張文斗,王 燕,徐 曼,等. 觀賞桃分子育種研究進(jìn)展與展望[J]. 農(nóng)業(yè)與技術(shù),2023,43(12):56-59.

      [9]Kothari S L,Joshi A,Kachhwaha S,et al. Chilli peppers:a review on tissue culture and transgenesis[J]. Biotechnology Advances,2010,28(1):35-48.

      [10]Lu B Y,Cheng G X,Zhang Z,et al. CaMYC,a novel transcription factor,regulates anthocyanin biosynthesis in color-leaved pepper (Capsicum annuum L.)[J]. Journal of Plant Growth Regulation,2019,38(2):574-585.

      [11]Taller J. Gene functioning in pepper[J]. Acta Agronomica Hungarica,2006,54(2):233-269.

      [12]Liu C Y,Peang H R,Li X Y,et al. Genome-wide analysis of NDR1/HIN1-like genes in pepper (Capsicum annuum L.) and functional characterization of CaNHL4 under biotic and abiotic stresses[J]. Horticulture Research,2020,7(1):93.

      [13]Wu D,Ni M,Lei X,et al. Analyses of pepper cinnamoyl-CoA reductase gene family and cloning of CcCCR1/2 and their function identification in the formation of pungency[J]. Horticulturae,2022,8(6):537.

      [14]Zhu Z S,Sun B M,Cai W,et al. Natural variations in the MYB transcription factor MYB31 determine the evolution of extremely pungent peppers[J]. New Phytologist,2019,223(2):922-938.

      [15]Wang Y X,Wang Z,Geng S S,et al. Identification of the GDP-L-galactose phosphorylase gene as a candidate for the regulation of ascorbic acid content in fruits of Capsicum annuum L[J]. International Journal of Molecular Sciences,2023,24(8):7529.

      [16]Zhang H F,Pei Y P,He Q,et al. Salicylic acid-related ribosomal protein CaSLP improves drought and Pst.DC3000 tolerance in pepper[J]. Molecular Horticulture,2023,3(1):6.

      [17]Zhou Y,Li Y,Yu T,et al. Characterization of the B-BOX gene family in pepper and the role of CaBBX14 in defense response against Phytophthora capsici infection[J]. International Journal of Biological Macromolecules,2023,237:124071.

      [18]Li Y,Ma X,Xiao L D,et al. CaWRKY50 acts as a negative regulator in response to Colletotrichum scovillei infection in pepper[J]. Plants,2023,12(10):1962.

      [19]Mao L Z,Tian W F,Shen Y Y,et al. Auxin-related MYB (CaSRM1) is involved in leaf shape development and reproductive growth in pepper (Capsicum annuum L.)[J]. Scientia Horticulturae,2023,322:112383.

      [20]Zhang L P,Wu D,Zhang W,et al. Genome-wide identification of WRKY gene family and functional characterization of CcWRKY25 in Capsicum chinense[J]. International Journal of Molecular Sciences,2023,24(14):11389.

      [21]Baek W,Bae Y,Lim C W,et al. Pepper homeobox abscisic acid signalling-related transcription factor 1,CaHAT1,plays a positive role in drought response[J]. Plant,Cell amp; Environment,2023,46(7):2061-2077.

      [22]Zhang J W,Xie M H,Yu G F,et al. CaSPDS,a spermidine synthase gene from pepper (Capsicum annuum L.),plays an important role in response to cold stress[J]. International Journal of Molecular Sciences,2023,24(5):5013.

      [23]Zhang H F,Guo J B,Chen X Q,et al. Transcription factor CabHLH035 promotes cold resistance and homeostasis of reactive oxygen species in pepper[J/OL]. Horticultural Plant Journal,2023(2023-03-16)[2023-11-10]. https://www.sciencedirect.com/science/article/pii/S2468014123000468.

      [24]Liu Y,Cao H Y,Ling J,et al. Molecular cloning and functional analysis of the pepper resistance gene Me3 to root-knot nematode[J]. Horticultural Plant Journal,2023,9(1):133-144.

      [25]Dong J C,Hu F,Guan W D,et al. A 163-bp insertion in the Capana10g000198 encoding a MYB transcription factor causes male sterility in pepper (Capsicum annuum L.)[J]. The Plant Journal,2023,113(3):521-535.

      [26]Ma X,Yu Y N,Li Y,et al. The CBL-interacting protein kinase CaCIPK7 enhances drought resistance in pepper[J]. Scientia Horticulturae,2023,310:111726.

      [27]Hussain A,Khan M I,Albaqami M,et al. CaWRKY30 positively regulates pepper immunity by targeting CaWRKY40 against Ralstonia solanacearum inoculation through modulating defense-related genes[J]. International Journal of Molecular Sciences,2021,22(21):12091.

      [28]Liang M M,Li H Y,Yong K,et al. Pepper autophagy related gene CaATG8e differentially regulates plant tolerance to heat and salt stress[J]. Scientia Horticulturae,2023,308(3):111559.

      [29]Choi B,Kwon S J,Kim M H,et al. A plant virus-based vector system for gene function studies in pepper[J]. Plant Physiology,2019,181(3):867-880.

      [30]Gordon-Kamm B,Sardesai N,Arling M,et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants[J]. Plants,2019,8(2):38.

      [31]Lee K,Wang K.Strategies for genotype-flexible plant transformation[J]. Current Opinion in Biotechnology,2023,79:102848.

      [32]Nagle M,Déjardin A,Pilate G,et al. Opportunities for innovation in genetic transformation of forest trees[J]. Frontiers in Plant Science,2018,9:1443.

      [33]Nalapalli S,Tunc-Ozdemir M,Sun Y J,et al. Morphogenic regulators and their application in improving plant transformation[J]. Methods in Molecular Biology,2021,2238:37-61.

      [34]Lowe K,Wu E,Wang N,et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. Plant Cell,2016,28(9):1998-2015.

      [35]Mookkan M,Nelson-Vasilchik K,Hague J,et al. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2[J]. Plant Cell Reports,2017,36(9):1477-1491.

      [36]Debernardi J M,Tricoli D M,Ercoli M F,et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nature Biotechnology,2020,38(11):1274-1279.

      [37]Feng Q,Xiao L,He Y Z,et al. Highly efficient,genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene[J]. Journal of Integrative Plant Biology,2021,63(12):2038-2042.

      [38]Wang K,Shi L,Liang X N,et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation[J]. Nature Plants,2022,8(2):110-117.

      [39]Heidmann I,de Lange B,Lambalk J,et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor[J]. Plant Cell Reports,2011,30(6):1107-1115.

      [40]Lian Z Y,Nguyen C D,Liu L,et al. Application of developmental regulators to improve in planta or in vitro transformation in plants[J]. Plant Biotechnology Journal,2022,20(8):1622-1635.

      [41]Kausch A P,Nelson-Vasilchik K,Hague J,et al. Edit at will:genotype independent plant transformation in the era of advanced genomics and genome editing[J]. Plant Science,2019,281:186-205.

      [42]Oh Y,Kim H,Kim S G.Virus-induced plant genome editing[J]. Current Opinion in Plant Biology,2021,60:101992.

      [43]Rssner C,Lotz D,Becker A. VIGS goes viral:how VIGS transforms our understanding of plant science[J]. Annual Review of Plant Biology,2022,73:703-728.

      [44]Yin K Q,Han T,Liu G,et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing[J]. Scientific Reports,2015,5:14926.

      [45]Wang M G,Lu Y M,Botella J R,et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system[J]. Molecular Plant,2017,10(7):1007-1010.

      [46]Ali Z,Abul-faraj A,Li L X,et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system[J]. Molecular Plant,2015,8(8):1288-1291.

      [47]Ellison E E,Nagalakshmi U,Gamo M E,et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs[J]. Nature Plants,2020,6:620-624.

      [48]Ma X N,Zhang X Y,Liu H M,et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J]. Nature Plants,2020,6(7):773-779.

      [49]Liu Q,Zhao C L,Sun K,et al. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes[J]. Molecular Plant,2023,16(3):616-631.

      [50]Zhou Y J,Deng Y T,Liu D,et al. Promoting virus-induced gene silencing of pepper genes by a heterologous viral silencing suppressor[J]. Plant Biotechnology Journal,2021,19(12):2398-2400.

      [51]Gleba Y,Klimyuk V,Marillonnet S.Viral vectors for the expression of proteins in plants[J]. Current Opinion in Biotechnology,2007,18(2):134-141.

      [52]Wang Y Y,Zhang Y A,Dong Y X,et al. A highly efficient mesophyll protoplast isolation and PEG-mediated transient expression system in eggplant[J]. Scientia Horticulturae,2022,304:111303.

      [53]Xia K K,Zhang D W,Liu G Y,et al. Efficient multiplex genome editing tools identified by protoplast technology in Phalaenopsis[J]. Biorxiv,2020,322:111368.

      [54]Naing A H,Adedeji O S,Kim C K.Protoplast technology in ornamental plants:current progress and potential applications on genetic improvement[J]. Scientia Horticulturae,2021,283:110043.

      [55]Zhang Q,Xing H L,Wang Z P,et al. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention[J]. Plant Molecular Biology,2018,96(4):445-456.

      [56]Fan Y T,Xin S C,Dai X M,et al. Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins[J]. Industrial Crops and Products,2020,146:112146.

      [57]Poovaiah C,Phillips L,Geddes B,et al. Genome editing with CRISPR/Cas9 in Pinus radiata (D.Don)[J]. BMC Plant Biology,2021,21(1):363.

      [58]Najafi S,Bertini E,DIncà E,et al. DNA-free genome editing in grapevine using CRISPR/Cas9 ribonucleoprotein complexes followed by protoplast regeneration[J]. Horticulture Research,2023,10(1):uhac240.

      [59]Kim H,Choi J,Won K H.A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of

      Capsicum annuum[J]. BMC Plant Biology,2020,20(1):449.

      [60]Maren N A,Duan H,Da K D,et al. Genotype-independent plant transformation[J]. Horticulture Research,2022,9:uhac047.

      [61]Yang L,Machin F,Wang S F,et al. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks[J]. Nature Biotechnology,2023,41:958-967.

      [62]Thomas H,van den Broeck L,Spurney R,et al. Gene regulatory networks for compatible versus incompatible grafts identify a role for SlWOX4 during junction formation[J]. The Plant Cell,2022,34(1):535-556.

      [63]Ruf S,F(xiàn)orner J,Hasse C,et al. High-efficiency generation of fertile transplastomic Arabidopsis plants[J]. Nature Plants,2019,5(3):282-289.

      [64]Kwak S Y,Lew T T S,Sweeney C J,et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nature Nanotechnology,2019,14(5):447-455.

      [65]Liu Y X,Li F,Gao L,et al. Advancing approach and toolbox in optimization of chloroplast genetic transformation technology[J]. Journal of Integrative Agriculture,2023,22(7):1951-1966.

      [66]Maher M F,Nasti R A,Vollbrecht M,et al. Plant gene editing through de novo induction of meristems[J]. Nature Biotechnology,2020,38:84-89.

      [67]Ellison E E,Nagalakshmi U,Gamo M E,et al. Author correction:multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs[J]. Nature Plants,2021,7:99.

      [68]Gao Q,Xu W Y,Yan T,et al. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies[J]. New Phytologist,2019,223(4):2120-2133.

      猜你喜歡
      遺傳轉(zhuǎn)化轉(zhuǎn)化策略辣椒
      原來(lái),你還是這樣的辣椒
      你的辣椒結(jié)出果實(shí)了嗎?
      辣椒也瘋狂
      揀辣椒
      中外文摘(2020年9期)2020-06-01 13:47:56
      “轉(zhuǎn)化”在數(shù)學(xué)教學(xué)中的運(yùn)用
      考試周刊(2016年89期)2016-12-01 12:41:12
      淺談高中數(shù)學(xué)學(xué)困生的成因及轉(zhuǎn)化策略
      淺析小學(xué)數(shù)學(xué)學(xué)困生的成因和轉(zhuǎn)化策略
      大學(xué)“學(xué)困生”成因及其轉(zhuǎn)化策略淺析
      文教資料(2016年19期)2016-11-07 11:11:25
      多毛番茄冷誘導(dǎo)轉(zhuǎn)錄因子CBF1轉(zhuǎn)化番茄的研究
      番茄黃化曲葉病毒Rep基因植物表達(dá)載體的構(gòu)建及對(duì)番茄的遺傳轉(zhuǎn)化
      精河县| 牟定县| 青海省| 翁牛特旗| 沙田区| 库尔勒市| 县级市| 定襄县| 界首市| 耒阳市| 宣城市| 黄冈市| 股票| 丰宁| 吴川市| 宜昌市| 武强县| 集安市| 通江县| 汪清县| 安西县| 菏泽市| 蒙阴县| 万荣县| 青州市| 桐柏县| 和龙市| 铜鼓县| 文山县| 明溪县| 陕西省| 宣武区| 新民市| 桂林市| 澄江县| 达尔| 龙门县| 兰考县| 乌拉特后旗| 宝鸡市| 乐都县|