楊 毅
(中國農(nóng)業(yè)大學(xué) 煙臺研究院,山東 煙臺 264670)
“量子力學(xué)”是20世紀(jì)物理學(xué)對人類科學(xué)研究兩大標(biāo)志性貢獻(xiàn)之一,已經(jīng)成為理工科專業(yè)最重要的基礎(chǔ)課程之一,學(xué)生熟練掌握量子力學(xué)的基本概念和基本理論,具備利用量子力學(xué)理論分析問題和解決問題的能力。對提高學(xué)生科學(xué)素,養(yǎng)培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識及亦具有十分重要的意義。但是,量子力學(xué)理論與學(xué)生長期以來接觸到的經(jīng)典物理體系相去甚遠(yuǎn),尤其是處理問題的思路和手段與經(jīng)典物理截然不同,但它們之間又不無關(guān)聯(lián),許多量子力學(xué)中的基本概念和基本理論是類比經(jīng)典物理中的相關(guān)內(nèi)容得出的。思維上的沖突導(dǎo)致學(xué)生在學(xué)習(xí)這門課程時困惑不堪。此外,這門課程理論性較強(qiáng),眾多學(xué)生陷于煩瑣的數(shù)學(xué)推導(dǎo)之中,導(dǎo)致學(xué)習(xí)興趣缺失。針對這些教學(xué)中的問題,如何激發(fā)學(xué)生學(xué)習(xí)本課程的熱情,充分調(diào)動學(xué)生的積極性和主動性,已經(jīng)成為擺在教師面前的重要課題。對“量子力學(xué)”課程的教學(xué)內(nèi)容應(yīng)作一些合理的調(diào)整。
從經(jīng)典物理所面臨的困難出發(fā),到半經(jīng)典半量子理論的形成,最終到量子理論的建立,對量子力學(xué)的發(fā)展脈絡(luò)進(jìn)行細(xì)致的、實事求是的分析,特別是對量子理論早期的概念發(fā)展有一個準(zhǔn)確清晰的理解,弄清楚到底哪些概念和原理是已經(jīng)證明為正確并得到公認(rèn)的,還存在哪些不完善的地方。這樣一方面可使學(xué)生對量子力學(xué)中基本概念和基本理論的形成和建立的科學(xué)歷史背景有一深刻了解,有助于學(xué)生理清經(jīng)典物理與量子理論之間的界限和區(qū)別,加深他們對這些基本概念和基本理論的理解;另一方面,可使學(xué)生對蘊(yùn)藏在這一歷程中的智慧火花和科學(xué)思維方法有一全面的了解,有助于培養(yǎng)學(xué)生的創(chuàng)新意識及科學(xué)素養(yǎng)。比如:對于玻爾理論,由于對量子化假設(shè)很難用已經(jīng)成形的經(jīng)典理論來解釋,學(xué)生往往會覺得不可思議,難以理解。為此,在講解這部分內(nèi)容時,很有必要介紹一下玻爾理論產(chǎn)生的歷史背景,告訴學(xué)生在玻爾的量子化假設(shè)之前就已經(jīng)出現(xiàn)了普朗克的量子論和愛因斯坦的光量子概念,且大量關(guān)于原子光譜的實驗數(shù)據(jù)也已經(jīng)被掌握,之前盧瑟福提出的簡單行星模型卻與經(jīng)典物理理論及實驗事實存在嚴(yán)重背離。為了解決這些問題,玻爾理論才應(yīng)運(yùn)而生。在用量子力學(xué)求解氫原子定態(tài)波函數(shù)時,還可以通過定態(tài)波函數(shù)的概率分布圖,向?qū)W生介紹所謂的玻爾軌道并不是真實存在的,只是電子出現(xiàn)幾率比較大的區(qū)域。通過這樣講述,學(xué)生可以清晰地體會到玻爾理論的承上啟下的作用,而又不至于將其與量子力學(xué)中的概念混為一談。
在物理學(xué)研究中,數(shù)學(xué)只是用來表述物理思想并在此基礎(chǔ)上進(jìn)行邏輯演算的工具,教師不能將深刻的物理思想淹沒在復(fù)雜的數(shù)學(xué)形式之中。因此,在教學(xué)過程中,教師要著重于加強(qiáng)基本概念和基本理論的講授,把握這些概念和理論中所蘊(yùn)含的物理實質(zhì)。對一些涉及繁難數(shù)學(xué)推導(dǎo)的內(nèi)容,在教學(xué)中刻意忽略具體數(shù)學(xué)推導(dǎo)過程,著重于使學(xué)生掌握其中的思想方法。例如:在一維線性諧振子問題的教學(xué)中,對于數(shù)學(xué)方面的問題,只要求學(xué)生能正確寫出薛定諤方程、記住其結(jié)論即可,重點放在該類問題所蘊(yùn)含的物理意義及對現(xiàn)成結(jié)論的應(yīng)用上。這樣,學(xué)生就不會感到枯燥無味,而能始終保持較高的學(xué)習(xí)熱情。
“量子力學(xué)”這門課程本身實驗基礎(chǔ)薄弱、理論性較強(qiáng),物理圖像不夠直觀,一味采取傳統(tǒng)的灌輸式教學(xué),學(xué)生勢必感到枯燥,甚至厭煩。學(xué)習(xí)效果自然大打折扣。為了提高學(xué)生學(xué)習(xí)興趣,激發(fā)其學(xué)習(xí)的積極性,培養(yǎng)其科學(xué)探索精神及創(chuàng)新能力,在教學(xué)方法上應(yīng)進(jìn)行積極的探索。
在必要的教學(xué)內(nèi)容講解外,每節(jié)課都留出一定的師生互動時間。教師通過創(chuàng)設(shè)問題情景,引導(dǎo)學(xué)生進(jìn)行研究討論,或者針對已講授內(nèi)容,使學(xué)生對已學(xué)內(nèi)容進(jìn)行復(fù)習(xí)、總結(jié)、辨析,以加深理解;或者針對未講授內(nèi)容,激發(fā)學(xué)生學(xué)習(xí)新知識的興趣(比如,在講授完一維無限深方勢阱和一維線性諧振子這兩個典型的束縛態(tài)問題后就可引導(dǎo)學(xué)生思考“非束縛態(tài)下微觀粒子又將表現(xiàn)出什么樣的行為”),這樣學(xué)生就會積極地預(yù)習(xí)下節(jié)內(nèi)容;或者選擇一些有代表性的習(xí)題,讓學(xué)生提出不同的解決辦法,培養(yǎng)學(xué)生的創(chuàng)新能力。對于在課堂上不能解決的問題,積極鼓勵學(xué)生利用圖書館及網(wǎng)絡(luò)資源等尋求解決,培養(yǎng)學(xué)生的科學(xué)探索精神。此外,還可使學(xué)生自由組合,挑選他們感興趣的與課程有關(guān)的題目進(jìn)行討論、調(diào)研并完成小組論文,這一方面激發(fā)學(xué)生的自主學(xué)習(xí)積極性,另一方面使其接受初步的科研訓(xùn)練,一舉兩得。
在實際教學(xué)中著重注意物理圖像的構(gòu)建,使學(xué)生對一些難以理解的概念和理論形成較為直觀的印象,從而形成深刻的記憶和理解。例如:借助電子束衍射實驗,通過三個不同的實驗過程(強(qiáng)電子束、弱電子束及弱電子束長時間曝光),即可為實物粒子的波粒二象性構(gòu)建出一幅清晰的物理圖像;借助電子束衍射實驗圖像,再以光波類比電子波,即可凝練出波函數(shù)的統(tǒng)計解釋;借助電子雙縫衍射實驗圖像,可使學(xué)生更易接受和理解態(tài)疊加原理;借助解析幾何中的坐標(biāo)系,可很好地為學(xué)生建立起表象的物理圖像。盡管這其中光波和電子波、坐標(biāo)系和表象這些概念之間有本質(zhì)上的區(qū)別,但借助這些學(xué)生已經(jīng)熟知和深刻理解的概念,可使學(xué)生非常容易地接受和理解量子力學(xué)中難以言明的概念和理論,同時,也可使學(xué)生掌握這種物理圖像的構(gòu)建能力,對培養(yǎng)學(xué)生的創(chuàng)新思維具有非常積極地作用。
如安排小組討論課,對難于理解的概念和規(guī)律進(jìn)行討論。先是各小組內(nèi)討論,再是小組間辯論,最后老師對各小組討論和辯論的觀點進(jìn)行評述和指正。例如,在講到微觀粒子的波函數(shù)時,有的學(xué)生會認(rèn)為是全部粒子組成波函數(shù),有的學(xué)生會認(rèn)為是經(jīng)典物理學(xué)的波。這些問題的討論激發(fā)了學(xué)生的求知欲望,從而進(jìn)一步激發(fā)了學(xué)生對一些不易理解的概念和量子原理進(jìn)行深入理解,直至最后充分理解這些內(nèi)容。另外課程作業(yè)布置小論文,邀請國內(nèi)外專家開展系列量子力學(xué)講座等都是不錯的方式。
把課程教學(xué)和科研相結(jié)合,在教學(xué)過程中針對教學(xué)內(nèi)容,吸取科研中的研究成果,通過結(jié)合最新的科研動態(tài),向?qū)W生講授在相關(guān)領(lǐng)域的應(yīng)用以培養(yǎng)學(xué)生學(xué)習(xí)興趣。在量子力學(xué)誕生后,作為現(xiàn)代物理學(xué)的兩大支柱之一的現(xiàn)代物理學(xué)的每一個分支及相關(guān)的邊緣學(xué)科都離不開量子力學(xué)這個基礎(chǔ),量子理論與其他學(xué)科的交叉越來越多。例如:基本粒子、原子核、原子、分子、凝聚態(tài)物理到中子星、黑洞各個層次的研究以量子力學(xué)為基礎(chǔ);量子力學(xué)在通信和納米技術(shù)中的應(yīng)用;量子理論在生物學(xué)中的應(yīng)用;量子力學(xué)與正在研究的量子計算機(jī)的關(guān)系等,在教學(xué)中適當(dāng)?shù)卮┎暹@些知識,擴(kuò)大學(xué)生的知識面,消除學(xué)生對量子力學(xué)的片面認(rèn)識,提高學(xué)生學(xué)習(xí)興趣和主動性。
量子力學(xué)從誕生到發(fā)展的物理學(xué)史所包含的創(chuàng)新思維是迄今為止哪一門學(xué)科都難以比擬的。在20世紀(jì)初,經(jīng)典物理學(xué)晴空萬里,然而黑體輻射、光電效應(yīng)、原子光譜等物理現(xiàn)象的實驗結(jié)果嚴(yán)重沖擊經(jīng)典物理學(xué)理論,讓經(jīng)典物理學(xué)陷入危機(jī)四伏的境地。量子力學(xué)的誕生,開啟了人類科學(xué)發(fā)展的新思維。開展好量子力學(xué)的教學(xué)活動,在教學(xué)過程中展現(xiàn)量子力學(xué)數(shù)學(xué)形式之美,使學(xué)生在科學(xué)海洋中得到美的享受,有利于極大的提高學(xué)生的科學(xué)素養(yǎng),從精神上熏陶他們的創(chuàng)新精神。
[1]周世勛.量子力學(xué)教程[M].高教出版社,1979.
[2]曾謹(jǐn)言,錢伯初.量子力學(xué)專題分析(上)[M].高教出版社,1990.