程世明
摘 要:小學(xué)數(shù)學(xué)教學(xué)過程中,教師可以選擇變式訓(xùn)練的方式讓學(xué)生對數(shù)學(xué)的相關(guān)知識有所了解,以使學(xué)生對事物的特點(diǎn)和特征進(jìn)行本質(zhì)的認(rèn)識。小學(xué)數(shù)學(xué)使用變式訓(xùn)練的方法對于提升教學(xué)效率有促進(jìn)作用。學(xué)生對數(shù)學(xué)知識內(nèi)容的理解也會上升一個層次,實(shí)現(xiàn)學(xué)生舉一反三和觸類旁通的學(xué)習(xí)目標(biāo),對小學(xué)數(shù)學(xué)教學(xué)過程中變式訓(xùn)練進(jìn)行解讀分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);變式訓(xùn)練;解讀分析
變式教學(xué)主要是改變以往學(xué)校的教學(xué)方式,爭取能夠在相應(yīng)的教學(xué)領(lǐng)域當(dāng)中探索出更多新的教學(xué)方式方法,讓學(xué)生的數(shù)學(xué)知識學(xué)習(xí)更為有效,知識運(yùn)用技能也會得到相應(yīng)的提升。學(xué)生在變式學(xué)習(xí)中思維能力得到提高,舉一反三和觸類旁通的能力也有所增強(qiáng),教師的數(shù)學(xué)教學(xué)可以有目的、有計劃地完成,學(xué)生也能掌握更多知識。
一、數(shù)學(xué)課堂上教師合理設(shè)置問題,帶領(lǐng)學(xué)生走入實(shí)踐
教師在數(shù)學(xué)變式教學(xué)過程中,需要突破傳統(tǒng)的教學(xué)方式,將數(shù)學(xué)的相關(guān)概念和知識進(jìn)行轉(zhuǎn)化,學(xué)生在直觀認(rèn)識和實(shí)際操作的基礎(chǔ)上,使用驗(yàn)證的方式解決數(shù)學(xué)的相關(guān)問題,這種方式可以極大地提升學(xué)生的數(shù)學(xué)反應(yīng)能力和數(shù)學(xué)實(shí)踐能力,真正地了解變式教學(xué)的價值和意義。
例如,在學(xué)習(xí)人教版數(shù)學(xué)教材五年級下冊的《圖形的轉(zhuǎn)換》過程中,學(xué)生對軸對稱和旋轉(zhuǎn)進(jìn)行學(xué)習(xí),然后教師給學(xué)生創(chuàng)建欣賞和設(shè)計大賽,了解鑲嵌圖案的方式。教師可以使用多媒體PPT的形式給學(xué)生展示什么是軸對稱,什么是旋轉(zhuǎn)。學(xué)生可以通過對圖形的觀察、討論的方式得出軸對稱圖形的概念。首先學(xué)生可以通過自行設(shè)計和擺放的方式以及對折等構(gòu)建出一種直觀性的變式,由此對軸對稱圖形有初步的認(rèn)識,頭腦中形成概念:軸對稱圖形有對稱軸,對稱軸的兩側(cè)圖形完全相同。其次,教師給學(xué)生設(shè)計問題,用問題的方式引出非對稱圖形,若是軸兩側(cè)的圖形不對稱,是軸對稱圖形嗎?學(xué)生自我思考,然后討論。最后,教師通過課件的展示讓學(xué)生對非對稱圖形進(jìn)行了解,讓軸對稱的概念在頭腦中得到深化。
二、發(fā)揮聯(lián)系的作用,引導(dǎo)學(xué)生自主思考
事物之間存在廣泛的聯(lián)系,對特定聯(lián)系的探索可以發(fā)現(xiàn)數(shù)學(xué)學(xué)習(xí)的規(guī)律,因此規(guī)律教學(xué)也是小學(xué)變式教學(xué)中的關(guān)鍵一部分,這一般是為了解決數(shù)學(xué)難題而使用的。規(guī)律的有效探索可以讓學(xué)生的注意力更集中,思考的過程就會更有效果,學(xué)生在其中是主體,教師起到主導(dǎo)性作用,教師要適當(dāng)?shù)亟o學(xué)生更多啟發(fā),學(xué)生的知識學(xué)習(xí)才能不斷拓展、不斷延伸,這也是變式教學(xué)最為關(guān)鍵的表達(dá)和體現(xiàn),此過程可以最大化提升學(xué)生的思維水平,還能夠不斷地提升學(xué)生的探索精神。
例如,在學(xué)習(xí)《梯形面積》的過程中,教師引領(lǐng)學(xué)生探索梯形面積的公式推導(dǎo)過程,學(xué)生在梯形之前已經(jīng)學(xué)習(xí)了長方形、正方形還有三角形和平行四邊形等相關(guān)知識,這些公式和梯形面積計算公式之間有著千絲萬縷的聯(lián)系,因此教師可以轉(zhuǎn)換自己的思路和認(rèn)識,讓學(xué)生對圖形進(jìn)行充分的了解,對公式有充分的認(rèn)識,只有這樣才能更加有效快速地探索出梯形的面積。教師在教學(xué)過程中首先帶領(lǐng)學(xué)生對長方形和平行四邊形以及三角形的面積公式進(jìn)行復(fù)習(xí),由此衍生出梯形的面積公式,其間教師給學(xué)生提出問題,啟發(fā)學(xué)生去探索。
第一,梯形可以轉(zhuǎn)化為哪些已知面積公式的圖形?
第二,要怎樣實(shí)施轉(zhuǎn)化,切割或者拼接或者劃分?
第三,轉(zhuǎn)化之后的圖形面積你會計算嗎?試一試梯形面積的計算公式。
在這幾個問題的探索過程中,學(xué)生溫故知新,可以在變式學(xué)習(xí)中讓學(xué)生進(jìn)行廣泛的思考,學(xué)生沿襲這樣的思路探索出關(guān)于梯形面積的公式,然后在推理和歸納以及總結(jié)的基礎(chǔ)上使自身的能力得到更好的鍛煉,使問題的處理也更加高效、簡潔和便利。
三、靈活運(yùn)用解題技巧,提升解題變式教學(xué)效率
解題訓(xùn)練在高年級數(shù)學(xué)教學(xué)過程中屬于重點(diǎn)內(nèi)容,學(xué)生的解題能力在變式教學(xué)上也是難點(diǎn)之一,因此在這個過程中教師需要更加關(guān)注學(xué)生的思維能力提升,讓學(xué)生可以有效運(yùn)用多種解題技巧解決小學(xué)數(shù)學(xué)問題。小學(xué)生本身進(jìn)入高年級之后所接觸到的數(shù)學(xué)公式就非常多,能應(yīng)對變式就可以極大地提升解題的效率。教師在平時的教學(xué)中應(yīng)關(guān)注學(xué)生基礎(chǔ)知識的掌握,然后在基礎(chǔ)知識夯實(shí)的前提下,讓學(xué)生更為精準(zhǔn)有效地進(jìn)行題目的把握,提升學(xué)生的思維能力和解題能力。
例如,在學(xué)習(xí)《分?jǐn)?shù)的意義和性質(zhì)》過程中,教師可以給學(xué)生設(shè)定情境,讓學(xué)生運(yùn)用自己對分?jǐn)?shù)的了解和解題技巧進(jìn)行變式。如“已知在一個班級中,女生人數(shù)是男生的,請你自己說出問題然后寫出算式”。從這個題目中教師給出學(xué)生的數(shù)量不是一個定數(shù),學(xué)生自己去假設(shè),自己提出問題,這有利于思維方式的提升,還可以讓學(xué)生對數(shù)量關(guān)系的理解更加深入。
綜上所述,本文對小學(xué)數(shù)學(xué)有效教學(xué)的變式訓(xùn)練進(jìn)行了解讀和分析,小學(xué)數(shù)學(xué)變式教學(xué)可以使用相應(yīng)的解題技巧以及聯(lián)系的作用還有問題的設(shè)置進(jìn)行完善,以提升小學(xué)數(shù)學(xué)教學(xué)效率。
參考文獻(xiàn):
[1]李靜.哲學(xué)視野下小學(xué)數(shù)學(xué)多元表征變式教學(xué)構(gòu)建及其實(shí)證研究[J].數(shù)學(xué)教育學(xué)報,2016,25(5):45-48,91.
[2]劉祖均.小學(xué)數(shù)學(xué)的變式練習(xí)教育初探[J].中學(xué)課程輔導(dǎo)(教學(xué)研究),2017,11(2):50.
[3]李發(fā)軍.小學(xué)數(shù)學(xué)練習(xí)課變式教學(xué)中培養(yǎng)學(xué)生創(chuàng)新能力初探[J].讀寫算(教研版),2015,5(21):88.
編輯 郭小琴