楊曉紅
摘 要:正弦函數(shù)和余弦函數(shù)是高中數(shù)學(xué)的教學(xué)重點(diǎn),在學(xué)生已經(jīng)認(rèn)識過一般函數(shù)的基本性質(zhì)之后,如何將其運(yùn)用到正弦、余弦函數(shù)性質(zhì)的探索之中呢?筆者認(rèn)為,教師在教學(xué)中要引導(dǎo)學(xué)生重視函數(shù)圖像在性質(zhì)研究中的地位,同時(shí)要凸顯學(xué)生探究的主體性,落實(shí)“過程教育”發(fā)揮其蘊(yùn)含的教育價(jià)值,以下是筆者對教學(xué)過程的介紹和反思。
關(guān)鍵詞:教學(xué)過程;教學(xué)反思
教材分析:本節(jié)課選自人教A版必修4第一章三角函數(shù)‘正弦函數(shù)、余弦函數(shù)的性質(zhì)’一節(jié)。
學(xué)情分析:本課之前,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的性質(zhì)和研究函數(shù)的一般方法,這些都為本節(jié)課的學(xué)習(xí)打好了基礎(chǔ)。
教學(xué)目的:(1)知識與技能:通過觀察正弦、余弦函數(shù)圖像得到正弦函數(shù)、余弦函數(shù)的性質(zhì),并靈活應(yīng)用性質(zhì)解題;(2)過程與方法:培養(yǎng)學(xué)生分析、探索、類比和數(shù)形結(jié)合等數(shù)學(xué)思想方法在解決問題中的應(yīng)用能力;(3)情感、態(tài)度與價(jià)值觀:讓學(xué)生親身經(jīng)歷數(shù)學(xué)的研究過程,感受數(shù)學(xué)的魅力。
教學(xué)過程:
1.復(fù)習(xí)回顧,引入新知:
師:首先回顧前面所學(xué)的正弦函數(shù)、余弦函數(shù)的圖像、定義域以及周期。
設(shè)計(jì)意圖:教師通過PPT引導(dǎo)學(xué)生回顧正弦函數(shù)、余弦函數(shù)的圖像、定義域以及周期,喚醒學(xué)生的回憶,為下面教學(xué)環(huán)節(jié)做鋪墊。
2.螺旋探究,尋覓新知
師:通過上一節(jié)課的學(xué)習(xí),正弦、余弦函數(shù)的圖像有“周而復(fù)始”的現(xiàn)象,二者的周期均為2π,那么正弦、余弦函數(shù)除了這種“周而復(fù)始”的現(xiàn)象,其圖像還具有哪一些特點(diǎn)?我們先研究正弦函數(shù)。(教師通過PPT呈現(xiàn)出正弦函數(shù)f(x)=sinx(x∈R)的圖像。并示意學(xué)生觀察圖像,思考、討論正弦函數(shù)圖像的特點(diǎn))
學(xué)生2:正弦函數(shù)f(x)=sinx的圖像關(guān)于原點(diǎn)對稱,是一個(gè)奇函數(shù)。
師:很好,通過觀察正弦函數(shù)的圖像我們知道正弦函數(shù)的圖像關(guān)于原點(diǎn)對稱,是奇函數(shù),這是利用正弦函數(shù)的圖像直觀理解正弦函數(shù)的奇偶性,能否從定義出發(fā),證明正弦函數(shù)的奇偶性?
學(xué)生3:首先正弦函數(shù)f(x)=sinx的定義域關(guān)于原點(diǎn)對稱;其次f(-x)=sin(-x)=-sinx=-f(x)因此f(x)=sinx是奇函數(shù)。
師:類比正弦函數(shù),能否給出余弦函數(shù)f(x)=cosx的奇偶性,并加以證明?
學(xué)生齊:首先余弦函數(shù)f(x)=cosx的定義域關(guān)于原點(diǎn)對稱;f(-x)=cos(-x)=cosx=-f(x)
因此f(x)=cosx是偶函數(shù)。
3.正、余弦函數(shù)的性質(zhì)對比
師:通過以上的討論,我們對正弦和余弦函數(shù)的性質(zhì)都有了認(rèn)識,下面請對比二者性質(zhì)的異同.
學(xué)生4:正弦函數(shù)與余弦函數(shù)的圖像形狀相同,周期相同。
學(xué)生5:正弦函數(shù)圖像向左平移個(gè)單位即可得到余弦函數(shù)的圖像。
學(xué)生6:正弦函數(shù)與余弦函數(shù)的定義域、值域、最值都一樣。
學(xué)生7:正弦函數(shù)和余弦函數(shù)都具有對稱中心和對稱軸,圖像都是軸對稱圖像和中心對稱圖形,相鄰的對稱軸和對稱中心相差個(gè)單位,因?yàn)橛忠驗(yàn)檎液瘮?shù)圖像向左平移個(gè)單位即可得到余弦函數(shù)的圖像,所以正弦函數(shù)的對稱軸和余弦函數(shù)的對稱中心的橫坐標(biāo)相同,正弦函數(shù)的對稱中心和余弦函數(shù)的對稱軸的橫坐標(biāo)相同。
教師對學(xué)生的回答加以總結(jié)。
4.學(xué)以致用,鞏固深化
練習(xí)1判斷函數(shù)的奇偶性。
約三分鐘后,展示同學(xué)們的解法。
解法1f(x)的定義域關(guān)于原點(diǎn)對稱。又因?yàn)椋詅(x)是奇函數(shù)。
解法2f(x)的定義域關(guān)于原點(diǎn)對稱。又因?yàn)槭瞧婧瘮?shù),是偶函數(shù),所以是奇函數(shù)。
教學(xué)反思
1.用規(guī)范的教學(xué)目標(biāo)來引領(lǐng)教學(xué)
本課的主要教學(xué)目標(biāo)是掌握正弦、余弦函數(shù)的奇偶性。根據(jù)這一教學(xué)目標(biāo),本課的設(shè)計(jì)思路如下,先對函數(shù)基本性質(zhì)以及正弦、余弦函數(shù)的圖像及周期性進(jìn)行復(fù)習(xí),在此基礎(chǔ)上引導(dǎo)學(xué)生正弦函數(shù)的另一性質(zhì),再通過類比來研究余弦函數(shù)的性質(zhì),并通過對比來提升學(xué)生的認(rèn)識,最后讓學(xué)生通過總結(jié)回顧來歸納課堂所學(xué),提煉研究方法。
2.用合適的問題來驅(qū)動學(xué)生思考
思維和思想的展開過程始于問題,設(shè)計(jì)具有一定思考性、探索性、思想性、趣味性或能引起學(xué)生認(rèn)知沖突的問題是支撐和激勵學(xué)生學(xué)習(xí)的源泉,是促使學(xué)生“自主”學(xué)習(xí)的切入點(diǎn),是實(shí)現(xiàn)教學(xué)過程中數(shù)學(xué)交流的起因,是學(xué)生實(shí)現(xiàn)創(chuàng)新的基礎(chǔ)。
3.用反思性問題來加深理性認(rèn)識
獲得數(shù)學(xué)結(jié)果(或解決問題)之后的反思,有助于學(xué)生對研究內(nèi)容和研究方法的理解達(dá)到一定的“深度”與“寬度”。例如探究正弦、余弦函數(shù)的性質(zhì)后,對兩者的性質(zhì)進(jìn)行對比總結(jié);在例題1的講解過程中,通過錯(cuò)題的講解,復(fù)習(xí)反思函數(shù)的定義域優(yōu)先原則。
總之,過程教育的基本定位是“以知識教學(xué)為基點(diǎn),以能力培養(yǎng)為核心,以個(gè)性教養(yǎng)為肯綮”;教學(xué)要求是“教學(xué)內(nèi)容全面;認(rèn)知過程完整;時(shí)間分配合理;教學(xué)方法和諧”。而這節(jié)課形成的教學(xué)操作方法符合“過程教育”的精神實(shí)質(zhì)并且具有普遍的適用性.
參考文獻(xiàn)
[1]鄔云德.寓“過程教育”于“認(rèn)識不等式”的教學(xué)探索及反思[J].中學(xué)數(shù)學(xué)教育,2014(1-2).
[2]胡乾彪.基于過程教育的課例及反思以正弦函數(shù)、余弦函數(shù)的性質(zhì)(1)為例[J].中學(xué)數(shù)學(xué)教育,2016(7-8).