• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      數(shù)學(xué)思想在高中解析幾何中的運(yùn)用

      2020-12-28 01:59:13付澤
      科技資訊 2020年30期
      關(guān)鍵詞:解析幾何數(shù)學(xué)思想高中數(shù)學(xué)

      付澤

      摘? 要:解析幾何是一門(mén)以代數(shù)的形式進(jìn)行圖形研究的學(xué)科,將變量引入了幾何的領(lǐng)域,在整個(gè)高中數(shù)學(xué)具有重要地位。解析幾何中常用到的數(shù)學(xué)思想有:數(shù)形結(jié)合思想、轉(zhuǎn)化化歸思想、分類(lèi)討論思想和函數(shù)與方程思想。該文就這4種思想在解析幾何中的應(yīng)用做簡(jiǎn)要的說(shuō)明,以期在今后的學(xué)生學(xué)習(xí)和教師教學(xué)中達(dá)到“化抽象為直觀,化復(fù)雜為簡(jiǎn)單的”效果。

      關(guān)鍵詞:數(shù)學(xué)思想? 高中數(shù)學(xué)? 解析幾何? 應(yīng)用

      中圖分類(lèi)號(hào):G63? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? ? ? ? ? 文章編號(hào):1672-3791(2020)10(c)-0254-03

      Abstract: Analytical geometry is a subject that conducts graphic research in the form of algebra. It introduces variables into the field of geometry. It has an important position in mathematics throughout high school. The mathematical ideas commonly used in analytic geometry are: the combination of numbers and shapes, transformation Reduction thoughts, classification discussion thoughts and function and equation thoughts. This article gives a brief description of the application of these four thoughts in analytic geometry, with a view to achieving the goal of “turning abstraction into intuition and turning complexity into Simple" effect.

      Key Words: Mathematical thinking; High school mathematics; Analytical geometry; Application

      解析幾何是高中數(shù)學(xué)一個(gè)重要的內(nèi)容,同時(shí)也是學(xué)生學(xué)習(xí)的一個(gè)難點(diǎn)。數(shù)學(xué)思想是數(shù)學(xué)學(xué)科的一般原理的重要組成部分,因此在教學(xué)中引入適當(dāng)?shù)臄?shù)學(xué)思想有助于幫助學(xué)生進(jìn)行問(wèn)題的分析和研究。在高中解析幾何中主要運(yùn)用數(shù)形結(jié)合思想、轉(zhuǎn)化化歸思想、分類(lèi)討論思想及函數(shù)與方程思想。

      1? 數(shù)學(xué)思想在高中解析幾何中的運(yùn)用

      1.1 數(shù)形結(jié)合思想

      我國(guó)著名的數(shù)學(xué)家華羅庚說(shuō):“形缺數(shù)時(shí)難入微,數(shù)缺形時(shí)少直度觀”。數(shù)形結(jié)合思想是中學(xué)數(shù)學(xué)常用的一種重要思想,實(shí)質(zhì)上是指通過(guò)數(shù)與形之間的轉(zhuǎn)化,將抽象的數(shù)量關(guān)系轉(zhuǎn)化為具體的圖形,根據(jù)圖形所呈現(xiàn)出來(lái)的結(jié)構(gòu)發(fā)現(xiàn)數(shù)量之間的較為直觀的關(guān)系。數(shù)形結(jié)合包括兩個(gè)方面:第一種情形是“以數(shù)解形”;第二種情形是“以形助數(shù)”。即將抽象的數(shù)學(xué)語(yǔ)言與直觀的圖形進(jìn)行有機(jī)結(jié)合。

      1.2 轉(zhuǎn)化化歸思想

      轉(zhuǎn)化化歸是指通過(guò)某種轉(zhuǎn)化,將未知解的問(wèn)題轉(zhuǎn)化為已有知識(shí)范圍內(nèi)容易解決的問(wèn)題,通常在數(shù)量之間、圖形之間、數(shù)量與圖形之間進(jìn)行轉(zhuǎn)化。常見(jiàn)的轉(zhuǎn)化化歸的方法包括:直接轉(zhuǎn)化法、換元法、數(shù)形結(jié)合法、等價(jià)轉(zhuǎn)化法以及特殊化方法。在高中解析幾何問(wèn)題中求取值范圍時(shí)用到此思想較多。下面以一道例題為例。

      1.3 分類(lèi)討論思想

      分類(lèi)討論是指在研究數(shù)學(xué)問(wèn)題的過(guò)程中,根據(jù)題目的要求或者實(shí)際情況對(duì)問(wèn)題進(jìn)行劃分,最后對(duì)所有可能的情況做概括說(shuō)明。在進(jìn)行分類(lèi)討論時(shí),要保證分類(lèi)科學(xué),標(biāo)準(zhǔn)統(tǒng)一,不重不漏,分類(lèi)方式力求最簡(jiǎn)。

      1.4 函數(shù)與方程思想

      函數(shù)與方程是高中數(shù)學(xué)中的兩個(gè)重要的概念,二者之間有著密切的聯(lián)系,方程問(wèn)題也可以轉(zhuǎn)換為函數(shù)問(wèn)題來(lái)求解,反之亦然。函數(shù)思想是通過(guò)函數(shù)的特征建立函數(shù)的模型,利用函數(shù)的性質(zhì)進(jìn)行解題;方程思想對(duì)方程概念本質(zhì)的認(rèn)識(shí),是通過(guò)構(gòu)建方程或方程組來(lái)分析數(shù)學(xué)問(wèn)題中變量間的等量關(guān)系,或者利用方程的性質(zhì)去分析、轉(zhuǎn)換、解決問(wèn)題。

      在解析幾何中,函數(shù)與方程思想的應(yīng)用非常廣泛,例如:兩條直線的位置關(guān)系、圓與圓的位置關(guān)系、直線與圓的位置關(guān)系等都是通過(guò)建立方程進(jìn)行求解。在圓錐曲線的問(wèn)題中,常常是將直線與圓錐曲線方程進(jìn)行聯(lián)立,利用韋達(dá)定理計(jì)算弦長(zhǎng)、交點(diǎn)坐標(biāo)等問(wèn)題。在利用函數(shù)與方程思想解決解析幾何問(wèn)題時(shí),要注意挖掘隱含的等量關(guān)系,利用代數(shù)的形式加以表示,再利用對(duì)方程求解或利用函數(shù)的性質(zhì)達(dá)到解決問(wèn)題的目的。

      2? 結(jié)語(yǔ)

      高中數(shù)學(xué)知識(shí)相對(duì)來(lái)說(shuō)難度較大且知識(shí)量較多。在學(xué)習(xí)的過(guò)程中,學(xué)生容易陷入死記硬背、知識(shí)點(diǎn)模糊不清的困境中,因此在高中數(shù)學(xué)教學(xué)中融入數(shù)學(xué)思想,可以幫助學(xué)生構(gòu)建完整的知識(shí)體系,對(duì)所學(xué)習(xí)的知識(shí)有更加深入和透徹的理解,在很大程度上能夠提高學(xué)生綜合運(yùn)用的能力,同時(shí)提升自我的數(shù)學(xué)素養(yǎng)。

      參考文獻(xiàn)

      [1] 庫(kù)熱西·艾力尤夫.數(shù)學(xué)思想在高中解析幾何中的應(yīng)用研究[J].中國(guó)校外教育,2020(2):49-50.

      [2] 尚莉杰.高中解析幾何數(shù)學(xué)思想方法教學(xué)研究[D].湖北師范大學(xué),2018.

      [3] 馮園新.高中解析幾何數(shù)學(xué)思想方法教學(xué)研究[D].河北師范大學(xué),2016.

      [4] 秦峰秀.數(shù)學(xué)思想方法在解析幾何教學(xué)中的滲透[J].高中數(shù)學(xué)教與學(xué),2018(4):32-33.

      [5] 徐德明.高中解析幾何知識(shí)中數(shù)學(xué)思想方法的教學(xué)策略研究[D].哈爾濱師范大學(xué),2019.

      [6] 尚莉杰.高中解析幾何數(shù)學(xué)思想方法教學(xué)研究[D].湖北師范大學(xué),2018.

      [7] 朱立明.高中生數(shù)學(xué)學(xué)科核心素養(yǎng)測(cè)評(píng)指標(biāo)體系的構(gòu)建[J].教育科學(xué),2020,36(4):29-37.

      [8] 陳亞萍,曾小平.TIMSS2015對(duì)高中生數(shù)學(xué)認(rèn)知的評(píng)價(jià)研究[J].數(shù)學(xué)通報(bào),2020,59(7):8-11,18.

      [9] 喬澤軒,劉崗.高中數(shù)學(xué)習(xí)題課中小組合作學(xué)習(xí)的教師指導(dǎo)研究[J].現(xiàn)代中小學(xué)教育,2020,36(8):40-44.

      猜你喜歡
      解析幾何數(shù)學(xué)思想高中數(shù)學(xué)
      探究數(shù)學(xué)軟件在解析幾何教學(xué)中的應(yīng)用價(jià)值
      淺談數(shù)學(xué)思想在初中數(shù)學(xué)教學(xué)中的應(yīng)用
      《復(fù)變函數(shù)》課程的教與學(xué)
      加強(qiáng)數(shù)學(xué)思想滲透發(fā)展數(shù)學(xué)思維能力
      如何培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣
      南北橋(2016年10期)2016-11-10 17:34:11
      用聯(lián)系發(fā)展的觀點(diǎn)看解析幾何
      高中數(shù)學(xué)數(shù)列教學(xué)中的策略選取研究
      考試周刊(2016年77期)2016-10-09 10:58:31
      調(diào)查分析高中數(shù)學(xué)課程算法教學(xué)現(xiàn)狀及策略
      考試周刊(2016年76期)2016-10-09 08:54:54
      基于新課程改革的高中數(shù)學(xué)課程有效提問(wèn)研究
      考試周刊(2016年76期)2016-10-09 08:20:33
      數(shù)學(xué)歸納法在高中數(shù)學(xué)教學(xué)中的應(yīng)用研究
      成才之路(2016年25期)2016-10-08 10:15:46
      昭通市| 洞口县| 南安市| 阳原县| 临湘市| 上虞市| 扶余县| 巴林右旗| 莫力| 宁陕县| 顺平县| 津市市| 荔波县| 平果县| 高陵县| 密山市| 万盛区| 两当县| 娱乐| 密山市| 屏东市| 喀喇| 新兴县| 西昌市| 富民县| 湘西| 竹北市| 镇巴县| 遵义县| 平果县| 广昌县| 庐江县| 云林县| 定远县| 枞阳县| 石首市| 平顶山市| 庆安县| 会东县| 乐亭县| 峡江县|