• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      淺談逐步提高中職學(xué)生核心素養(yǎng)之運(yùn)算能力

      2021-05-26 04:57:56嚴(yán)智勇
      家庭教育報(bào)·教師論壇 2021年13期
      關(guān)鍵詞:運(yùn)算能力中職學(xué)生核心素養(yǎng)

      嚴(yán)智勇

      【摘要】數(shù)學(xué)運(yùn)算是數(shù)學(xué)活動(dòng)的基本形式,也是演繹推理的一種形式,是得到數(shù)學(xué)結(jié)果的重要手段。在培養(yǎng)學(xué)生學(xué)科核心素養(yǎng)中,數(shù)學(xué)運(yùn)算能夠促進(jìn)數(shù)學(xué)思維的發(fā)展,養(yǎng)成程序化思考問題的習(xí)慣,形成一絲不茍,嚴(yán)謹(jǐn)求實(shí)的科學(xué)精神。在日常的教學(xué)中培養(yǎng)學(xué)生 正確的數(shù)學(xué)運(yùn)算習(xí)慣,引導(dǎo)學(xué)生熟練掌握數(shù)學(xué)基本知識(shí)與技能,靈活運(yùn)用數(shù)學(xué)思維,強(qiáng)化數(shù)學(xué)邏輯,從而提高數(shù)學(xué)運(yùn)算能力。

      【關(guān)鍵詞】 中職學(xué)生? ?核心素養(yǎng)? ?運(yùn)算能力? 策略

      在人類文明的發(fā)展歷程中,數(shù)學(xué)的發(fā)展促進(jìn)了當(dāng)今人類社會(huì)的科學(xué)技術(shù)發(fā)展,間接的推動(dòng)經(jīng)濟(jì)的繁榮,社會(huì)的進(jìn)步。數(shù)學(xué)運(yùn)算是數(shù)學(xué)在現(xiàn)實(shí)生活中的一種表現(xiàn),數(shù)學(xué)運(yùn)算對(duì)數(shù)學(xué)的發(fā)展起著決定性的作用,它可以提高人的思維能力,強(qiáng)化邏輯能力,同時(shí)也培養(yǎng)了嚴(yán)謹(jǐn)求實(shí)的科學(xué)。

      一、中職學(xué)生運(yùn)算能力的重要性

      運(yùn)算能力是學(xué)生學(xué)習(xí)數(shù)學(xué)必不可少的一項(xiàng)基本能力,是解決數(shù)學(xué)問題的必要前提。從簡單的整式、分式運(yùn)算,解方程與不等式等,以至于難度較大的數(shù)列、函數(shù)等都需要數(shù)學(xué)運(yùn)算去論證,加以證明。中職學(xué)生的學(xué)習(xí)生涯中數(shù)學(xué)運(yùn)算不僅是單方面的解題需要,同時(shí)也是培養(yǎng)思維清晰,做事嚴(yán)謹(jǐn),耐心認(rèn)真的工作精神。

      從普通的數(shù)學(xué)解題訓(xùn)練到數(shù)學(xué)考試,都需要有數(shù)學(xué)運(yùn)算的作為支持。面對(duì)升學(xué)參加3+證書考試,數(shù)學(xué)考試是必不可少的,而數(shù)學(xué)運(yùn)算則是最基本的一種考試的形式。對(duì)于即將面對(duì)就業(yè)生涯的學(xué)生,更重要的是培養(yǎng)他們的耐性,以及嚴(yán)謹(jǐn)求實(shí)的態(tài)度。達(dá)到培養(yǎng)數(shù)學(xué)核心素養(yǎng)的目的。

      二、中職學(xué)生的數(shù)學(xué)運(yùn)算能力現(xiàn)狀及原因分析

      1.分析中職學(xué)生的數(shù)學(xué)運(yùn)算能力的現(xiàn)狀;

      根據(jù)調(diào)查研究,發(fā)出問卷300份回收268分,調(diào)查的內(nèi)容主要有加減乘除四則混合運(yùn)算、分?jǐn)?shù)、方程等。調(diào)查發(fā)現(xiàn)大部分的中職學(xué)生的數(shù)學(xué)能力較差,幾乎連簡單的生活中遇到的算術(shù)問題都沒有辦法解決,嚴(yán)重的影響到以后的生活,連最基本的數(shù)學(xué)常識(shí)都沒有掌握,嚴(yán)重影響新知識(shí)的學(xué)習(xí),一定程度上影響了思維邏輯能力的發(fā)展。

      在簡單的加減運(yùn)算,中職學(xué)生基本可以掌握,但對(duì)于乘、除法就有一部分的學(xué)生表現(xiàn)出不知所措。后續(xù)的四則混合運(yùn)算、方程、分?jǐn)?shù)、小數(shù)的運(yùn)算,幾乎有80%左右的學(xué)生都沒法掌握。僅有20%左右的學(xué)生掌握初中的數(shù)學(xué)運(yùn)算能力。根據(jù)以上情況得知,大部分中職學(xué)生的數(shù)學(xué)運(yùn)算能力較差,嚴(yán)重影響了中職數(shù)學(xué)教學(xué)質(zhì)量的提高。

      2.導(dǎo)致中職學(xué)生數(shù)學(xué)運(yùn)算能力較差的原因分析

      (1)大部分中職學(xué)生在初中階段,就開始放棄對(duì)數(shù)學(xué)的學(xué)習(xí),主要是數(shù)學(xué)運(yùn)算能力制約了其發(fā)展,對(duì)數(shù)學(xué)運(yùn)算產(chǎn)生心理障礙。例如在解方程組的過程中,往往被繁瑣的計(jì)算過程所打敗。而在學(xué)習(xí)反比例函數(shù)與二次函數(shù)的學(xué)習(xí)過程中,學(xué)生不懂得函數(shù)解析式與圖像之間的關(guān)系,在學(xué)習(xí)過程中則是難上加難。

      (2)中職學(xué)生的運(yùn)算能力與學(xué)習(xí)習(xí)慣有很大的關(guān)系;中職學(xué)生缺乏學(xué)習(xí)的主動(dòng)性,學(xué)習(xí)的方法不夠科學(xué),沒有養(yǎng)成良好的學(xué)習(xí)習(xí)慣,另外對(duì)學(xué)習(xí)缺乏自信等。

      例如在求解以下題目:已知,求;這看起來是通過直接的公式代入的平面向量運(yùn)算題,但是大部分的學(xué)生懂得套用公式;先算,再

      算原因是學(xué)生缺乏對(duì)知識(shí)點(diǎn)的整理與運(yùn)用。

      (3)知識(shí)性的錯(cuò)誤是運(yùn)算能力差的中職學(xué)生最為廣泛的錯(cuò)誤。學(xué)生對(duì)知識(shí)點(diǎn)的認(rèn)知產(chǎn)生錯(cuò)誤對(duì)后續(xù)的學(xué)習(xí)產(chǎn)生了嚴(yán)重的影響。由于公式的理解錯(cuò)誤直接導(dǎo)致計(jì)算結(jié)果的錯(cuò)誤。大大打擊了學(xué)生的學(xué)習(xí)積極性。導(dǎo)致學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)產(chǎn)生厭倦。學(xué)生經(jīng)常會(huì)犯的幾個(gè)錯(cuò)誤,正確的公式是,正確答案是是最簡根式;等。知識(shí)性的錯(cuò)誤導(dǎo)致了學(xué)生在認(rèn)知的方面產(chǎn)生錯(cuò)誤。

      (4)教師在授課過程中知識(shí)點(diǎn)銜接不夠緊密,使學(xué)生在學(xué)習(xí)新知識(shí)的過程中產(chǎn)生一定的困惑,甚至對(duì)知識(shí)點(diǎn)的理解與應(yīng)用存在很大的問題。例如:教師在講授解一元二次不等式的時(shí)候,往往教師只告訴學(xué)生的解題方法與技巧,對(duì)于原理是有講述,但學(xué)生缺乏對(duì)二次函數(shù)圖像的理解,遇到一些特殊型的題目則無法解決。例如等。通過解一元二次方程的方法去解上題目是無法算出正確結(jié)果的,必須要通過二次函數(shù)的圖像才能順利的解題。中職學(xué)生的基礎(chǔ)較為薄弱至使對(duì)問題的理解不夠全面。在教師授課過程中應(yīng)該注重學(xué)生的基礎(chǔ)知識(shí)的掌握。

      三、提高中職學(xué)生運(yùn)算能力的方法和途徑

      基于中職學(xué)生的數(shù)學(xué)運(yùn)算能力的現(xiàn)狀及原因,如何提高中職學(xué)生的運(yùn)算能力;經(jīng)過調(diào)查研究,并且成立了“中職數(shù)學(xué)逐步提高核心素養(yǎng)教學(xué)設(shè)計(jì)實(shí)踐研究”課題。經(jīng)常過現(xiàn)階段的研究,提高中職學(xué)生的運(yùn)算能力,粗略得到以下的一些方法。

      1.加強(qiáng)基礎(chǔ)知識(shí)的教學(xué),夯實(shí)數(shù)學(xué)運(yùn)算基礎(chǔ)

      (1)溫故而知新,堅(jiān)持一步走三回頭,系統(tǒng)的整理基礎(chǔ)知識(shí);數(shù)學(xué)知識(shí)本身就是一個(gè)“九連環(huán)”環(huán)環(huán)相扣,一旦出現(xiàn)知識(shí)點(diǎn)銜接有問題,對(duì)于新知識(shí)的學(xué)習(xí)就容易出現(xiàn)斷層。

      例如在學(xué)習(xí)等比數(shù)列之前,必須要學(xué)會(huì)等差數(shù)列以及數(shù)列的基本概念作為前提,不了解數(shù)列的基本特征是 無法學(xué)習(xí)等差或等比數(shù)列的,而等比數(shù)列則是等差數(shù)列的一個(gè)升華學(xué)習(xí)的過程;要掌握好等比數(shù)列必須學(xué)習(xí)好數(shù)列的基本性質(zhì)與等差數(shù)列。在學(xué)習(xí)三角函數(shù)的時(shí)候也是一樣道理,假如不懂得三角函數(shù)的特殊值,對(duì)于作三角函數(shù)的圖像也是無動(dòng)于衷的。知識(shí)點(diǎn)環(huán)環(huán)相扣,對(duì)每一個(gè)知識(shí)點(diǎn)的掌握,直接影響到數(shù)學(xué)學(xué)習(xí)的效果;在練習(xí)與考試中則是每一道題都會(huì)綜合一到兩個(gè)知識(shí)考察。

      例如本學(xué)期學(xué)習(xí)了數(shù)列與平面向量,但對(duì)于學(xué)生考察學(xué)生絕對(duì)不能僅局限于以上的知識(shí)點(diǎn),必須加入所學(xué)知識(shí),在進(jìn)行考察,即讓學(xué)生鞏固了當(dāng)前所學(xué)知識(shí),又充分的讓學(xué)生回顧了之前所學(xué)的知識(shí)點(diǎn)。解決以下題目就用到了向量和三角函數(shù)的知識(shí)。

      ①已知平面向量的夾角為則

      ②若向量;且則

      ③在正項(xiàng)等比數(shù)列中,,則

      在上述的題目中可以意識(shí)到知識(shí)點(diǎn)之間的聯(lián)系。無論是在教師講授新知識(shí)時(shí),要對(duì)三個(gè)課時(shí)以內(nèi)的知識(shí)點(diǎn)進(jìn)行綜合整理應(yīng)用,學(xué)生要在老師的指導(dǎo)下完成本課時(shí)的知識(shí)點(diǎn)的學(xué)習(xí)以外,還要不斷地強(qiáng)化對(duì)過去知識(shí)點(diǎn)的復(fù)習(xí)。通過對(duì)知識(shí)點(diǎn)的總結(jié)分析,形成一個(gè)系統(tǒng)性的學(xué)習(xí)方法。在教師的教學(xué)與學(xué)生的學(xué)習(xí)過程中,教師要注重學(xué)生的基礎(chǔ)知識(shí)的掌握,學(xué)生則要做到系統(tǒng)全面的理解每一個(gè)知識(shí)點(diǎn)。

      (2)加強(qiáng)基礎(chǔ)知識(shí)的學(xué)習(xí),強(qiáng)化運(yùn)算技巧;通過數(shù)學(xué)公式、定理的理解,并要求學(xué)生注重運(yùn)算過程;教師在運(yùn)算演算推理過程中注重細(xì)節(jié)性的教學(xué),培養(yǎng)學(xué)生認(rèn)真嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

      例如

      <1>已知,則? ? ;解題的步驟分析

      步驟:①理解它們之間的關(guān)系

      ②通過運(yùn)算法則利用合角公式將展開運(yùn)算③通過對(duì)三角函數(shù)特殊值的記憶進(jìn)行下一步運(yùn)算得到

      <2>已知直線的傾斜角為,且經(jīng)過點(diǎn),則l的方程為? ? ? 對(duì)題進(jìn)行分析主要是對(duì)三角函數(shù)特殊值的應(yīng)用與直線方程點(diǎn)斜式的運(yùn)用;這說明了公式的應(yīng)用在數(shù)學(xué)運(yùn)算起到了至關(guān)重要的作用,甚至是決定性的作用,加強(qiáng)公式,定理的發(fā)生、發(fā)展和形成過程的教學(xué),讓學(xué)生真正理解基礎(chǔ)知識(shí),掌握基礎(chǔ)知識(shí)。

      (3)抓住數(shù)學(xué)運(yùn)算的銜接教學(xué),培養(yǎng)學(xué)生的運(yùn)算的規(guī)范習(xí)慣;知識(shí)點(diǎn)與知識(shí)點(diǎn)之間環(huán)環(huán)相扣;在高中階段數(shù)學(xué)的學(xué)習(xí)中,函數(shù)的知識(shí)就占據(jù)了相當(dāng)重要的位置。在學(xué)生學(xué)習(xí)函數(shù)的過程中,大部分的學(xué)生都認(rèn)為函數(shù)十分的抽象,學(xué)起來也十分的傷腦筋,恰恰是因?yàn)楹瘮?shù)的知識(shí)的掌握得不夠牢固,影響到、對(duì)數(shù)、指數(shù)以及三角函數(shù)的學(xué)習(xí)。

      針對(duì)函數(shù)之間的共性,我們必須要總結(jié)出一個(gè)辦法,對(duì)函數(shù)的知識(shí)點(diǎn)進(jìn)行一個(gè)突破,讓學(xué)生真正理解到函數(shù)解題技巧。對(duì)于函數(shù)的共性有以下幾個(gè)方面;定義域、值域、函數(shù)圖像;通過作圖像可以很直觀的分析出函數(shù)的基本特征;圖像是函數(shù)的直觀反映,教會(huì)學(xué)生作函數(shù)圖像,對(duì)于函數(shù)教學(xué)則是事半功倍。做好知識(shí)點(diǎn)的銜接是通向下一個(gè)知識(shí)點(diǎn),學(xué)習(xí)的重要橋梁。“無規(guī)矩不成方圓”;在培養(yǎng)學(xué)生數(shù)學(xué)運(yùn)算核心素養(yǎng)時(shí),必須強(qiáng)調(diào)數(shù)學(xué)運(yùn)算的嚴(yán)謹(jǐn)性與做題規(guī)范化的問題。規(guī)范學(xué)生的運(yùn)算習(xí)慣,培養(yǎng)學(xué)生的做事的規(guī)范化,并且養(yǎng)成良好的做事習(xí)慣,形成自己的個(gè)人風(fēng)格。從解題中的公式套用到,運(yùn)算中的靈活應(yīng)變,都離不開規(guī)范的解題習(xí)慣。例如 以下題目

      ①已知點(diǎn)A(1,2)B(3,1)求出AB線段垂直平分線的方程。

      分析:<1>解平面幾何的題目首先要作圖:<2>通過圖形求出中點(diǎn)與斜率;<3>用公式算出點(diǎn)斜式方程。歸根結(jié)底要理清題意;找出相對(duì)應(yīng)的知識(shí)點(diǎn),套用公式即可。

      ②如圖,現(xiàn)有一塊AB=8m,AD=6m的矩形空地ABCD,要改造成一個(gè)矩形AEFG花壇,其余為草坪的綠化帶設(shè)EB=2xm,GD=xm

      求矩形花壇的面積y與x的解析式;

      當(dāng)x為和值時(shí),花壇面積是草坪面積的一半

      分析:<1>明確矩形面積的算法;<2>通過面積公式可以整理出y與x的關(guān)系;<3>把x看成已知量,用x表示出其他的未知量,將未知量用關(guān)于x的算式表示出來。

      關(guān)于運(yùn)算的規(guī)范化提出幾點(diǎn)建議:<1>理解題意,理清思路,分析考點(diǎn);<2>利用題目的已知條件與公式相結(jié)合求解;<3>注重每一步的演繹推理,推理完成后進(jìn)行驗(yàn)算。注重?cái)?shù)學(xué)運(yùn)算的規(guī)范化,利用嚴(yán)謹(jǐn)務(wù)實(shí)的態(tài)度,解決問題。培養(yǎng)學(xué)生在現(xiàn)實(shí)生活中可以有條理的解決生活中的實(shí)際問題。

      結(jié)束語

      歸根結(jié)底數(shù)學(xué)運(yùn)算是數(shù)學(xué)發(fā)展的必經(jīng)之路,同時(shí)也是培養(yǎng)中職學(xué)生,做事情的嚴(yán)謹(jǐn)性,思維的靈活運(yùn)用,提高邏輯分析能力的基本途徑。對(duì)于數(shù)學(xué)運(yùn)算不能僅僅培養(yǎng)學(xué)生的解題能力;更重要的是讓學(xué)生在實(shí)際生活中應(yīng)用數(shù)學(xué)的思維解決生活中的具體問題。讓學(xué)生可以學(xué)以致用。

      參考文獻(xiàn):

      [1]俞標(biāo)濱.淺談如何培養(yǎng)中職學(xué)生的運(yùn)算能力[J].福建電腦,2014,30(03):210-212.

      [2]袁陳甸,王春鳳.核心素養(yǎng)導(dǎo)向下中職學(xué)生數(shù)學(xué)運(yùn)算能力探析[J].職業(yè)教育(中旬刊),2020,19(11):64-65.

      [3]張冰冰.中職學(xué)生數(shù)學(xué)運(yùn)算能力的培養(yǎng)策略[J].中等職業(yè)教育(理論),2012(09):35-36.

      [4]張冰冰.中職學(xué)生數(shù)學(xué)運(yùn)算能力的培養(yǎng)策略[J].中等職業(yè)教育(理論),2012(09):35-36.

      猜你喜歡
      運(yùn)算能力中職學(xué)生核心素養(yǎng)
      提高初中生數(shù)學(xué)運(yùn)算能力的教學(xué)策略研究
      人間(2016年31期)2016-12-17 21:32:53
      淺論高中數(shù)學(xué)運(yùn)算能力的培養(yǎng)
      考試周刊(2016年21期)2016-12-16 10:12:41
      高中生數(shù)學(xué)運(yùn)算能力的問題及策略
      考試周刊(2016年90期)2016-12-01 20:18:40
      小學(xué)低年級(jí)計(jì)算問題分析與應(yīng)對(duì)策略
      淺談中職英語單詞教學(xué)策略
      考試周刊(2016年86期)2016-11-11 08:23:58
      淺談如何培養(yǎng)中職學(xué)生學(xué)習(xí)英語的興趣
      淺談如何在語文課堂上激發(fā)中職學(xué)生學(xué)習(xí)的主動(dòng)性
      作為“核心素養(yǎng)”的傾聽
      今日教育(2016年7期)2016-10-08 09:44:23
      “1+1”微群閱讀
      向著“人”的方向邁進(jìn)
      九台市| 墨竹工卡县| 深泽县| 阿拉善右旗| 体育| 三原县| 外汇| 岳西县| 木里| 尖扎县| 温州市| 广元市| 乌兰浩特市| 阿坝| 潼关县| 邳州市| 晋江市| 泽库县| 铜陵市| 思南县| 南木林县| 通河县| 巴中市| 隆林| 建德市| 伊金霍洛旗| 平潭县| 连江县| 凤台县| 阳信县| 赤城县| 新野县| 丘北县| 玉田县| 固安县| 湖南省| 安泽县| 平潭县| 贵溪市| 铜山县| 太保市|