陳卉
【摘 要】數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)上。教師通過前測可以把握學(xué)生的學(xué)習(xí)起點(diǎn),分析學(xué)生已有的認(rèn)知水平,從而制定符合學(xué)生實(shí)際的教學(xué)策略,開展有效的學(xué)習(xí)活動,反思課堂教學(xué)方法。文章以《三角形的認(rèn)識》一課為例,通過前測,找準(zhǔn)新內(nèi)容與學(xué)生已有的認(rèn)知水平之間的落差,從而定位課堂教學(xué)的重難點(diǎn),尋找更有效的教學(xué)策略,引導(dǎo)學(xué)生主動、高效、扎實(shí)地學(xué)習(xí);后測則用于與前測的對比,反映課堂教學(xué)的有效性。
【關(guān)鍵詞】小學(xué)數(shù)學(xué);教學(xué)策略;前測;后測
前測是指在學(xué)校教師上課前,通過一定的調(diào)查方式對學(xué)生進(jìn)行相關(guān)知識預(yù)備和相關(guān)方法的預(yù)先測試,然后進(jìn)行有針對性的教學(xué)設(shè)計(jì)活動,并提出相應(yīng)的課堂教學(xué)策略。后測用于與前測對比,反映課堂教學(xué)的有效性。《三角形的認(rèn)識》是人教版小學(xué)數(shù)學(xué)四年級下冊的內(nèi)容,其中“三角形作高”是歷來被廣大教師公認(rèn)的教學(xué)難點(diǎn)?;谶@樣的現(xiàn)狀,教師必須深入了解學(xué)生的原有狀況,站在學(xué)生認(rèn)知基礎(chǔ)上設(shè)計(jì)教學(xué)活動,真正做到“因?qū)W定教”,嘗試用“教學(xué)前測”來尋找教學(xué)策略,提高課堂效率。借由本次紹興市越城區(qū)“1+1數(shù)學(xué)沙龍”的教研活動,嘗試運(yùn)用前、后測對《三角形的認(rèn)識》這一課的有效課堂教學(xué)策略進(jìn)行研討,以下是筆者的一些思考。
一、課前“初診”——了解學(xué)生的學(xué)習(xí)起點(diǎn)
(一)編擬前測試題
根據(jù)本課教學(xué)內(nèi)容和重難點(diǎn)分析可知,教學(xué)難點(diǎn)應(yīng)該是給三角形作高。通過“底和高”的定義剖析可知,作高的實(shí)質(zhì)是學(xué)生已學(xué)會的“過直線外一點(diǎn)作已知直線的垂線段”。為了了解學(xué)生對舊知的掌握情況,并喚起舊知,弄清學(xué)生的學(xué)習(xí)起點(diǎn),課前要求學(xué)生完成以下兩道測試題。
請你做一做
班級( )姓名( )學(xué)號( )
1. 請過直線外一點(diǎn),作已知直線的垂線。
①點(diǎn)A ②點(diǎn)B ③點(diǎn)C
2. 判斷:下面圖形中是三角形的請打“√”,不是三角形的請打“×”。
(二)匯總前測結(jié)果,分析學(xué)生的學(xué)習(xí)起點(diǎn)
調(diào)研的對象為紹興市越城區(qū)某小學(xué)四年三班的學(xué)生,該班的學(xué)生總數(shù)為34人。
根據(jù)相關(guān)的數(shù)據(jù)分析與老師們的研討,發(fā)現(xiàn)有1個學(xué)生對于前測題是完全亂做的,沒有一題是對的,另外的33個學(xué)生則正常反映了學(xué)生的學(xué)習(xí)起點(diǎn)。
在第1題中,筆者發(fā)現(xiàn),學(xué)生們的錯誤主要集中在第③小題,即鈍角三角形其中一條底邊上的高,需要通過延長底邊作高的情況;第①②小題也有個別學(xué)生錯,主要錯在所畫線段沒有與邊垂直,對垂線段的知識掌握不佳,還需要對之前的知識進(jìn)行鞏固復(fù)習(xí)。
在第2題中,學(xué)生們的錯誤主要集中在④和⑥。主要原因是對三角形概念理解有偏差,沒有理解定義中“圍成”兩字,沒有掌握三角形要“每相鄰的兩條線段的端點(diǎn)相連”,于是就出現(xiàn)了第④小題的錯法。至于第⑥小題的錯法比較難以理解,可能是學(xué)生以為只要有三個角三條邊就可以叫三角形了??磥碓诮虒W(xué)的過程中定義的理解與出示也不能馬虎,也應(yīng)該在課堂上加以呈現(xiàn)。
二、課中“診斷”——利用前測,有效制定教學(xué)策略
通過教學(xué)前測與情況分析,本課教學(xué)要先讓學(xué)生充分經(jīng)歷三角形定義的理解,而不能簡單地出示定義即可。另外,要充分體驗(yàn)三角形作高這個難點(diǎn)與已學(xué)知識“過直線外一點(diǎn)作已知直線的垂線”這一舊知的轉(zhuǎn)化,利用多媒體操作的直觀性,從而降低作高的難度。綜合上述分析,我們嘗試進(jìn)行了以下的教學(xué)實(shí)踐活動。
【課例教學(xué)片斷解讀1】三角形的定義
1. 讓學(xué)生每人自己畫一個三角形(同桌檢查,有沒有畫對)。
2. 老師在黑板上畫,請生判斷,分段揭示三角形的定義。
(1)老師畫①,學(xué)生判斷,老師板書“3條”。
學(xué)生觀察老師所畫,大家一致判斷這個不是三角形,理由是這個是四邊形,不是三角形,三角形應(yīng)該只有3個角3條邊,教師根據(jù)學(xué)生所說,在黑板上記錄下“3條”兩字。
(2)老師擦掉一條邊,出現(xiàn)圖形②,讓學(xué)生判斷。
學(xué)生觀察老師所改,一致判斷仍然不行,理由是這個圖形沒有封閉。老師根據(jù)學(xué)生所說繼續(xù)進(jìn)行修改。
(3)老師修改,把圖形封閉,出現(xiàn)圖形③,請生匯報,教師板書“線段”。
這一次,學(xué)生的判斷是還是不行,因?yàn)檫@條邊的“線”歪掉了,教師引導(dǎo)學(xué)生說出三角形的邊應(yīng)該是直的,像這樣的直線我們也可以稱為“線段”,教師根據(jù)學(xué)生匯報,在黑板上記錄下“線段”兩字。
(4)師改為圖④,生判斷,教師板書“每相鄰兩條線段的端點(diǎn)相連”、“圍成”。
大部分孩子還是不同意圖④為三角形,理由是這個線段畫出“頭”了,老師追問,這個“頭”就是線段的什么?引導(dǎo)學(xué)生說出“端點(diǎn)”兩字。怎么改?引導(dǎo)學(xué)生說出端點(diǎn)要相連。老師指其他幾個端點(diǎn)并追問:那么其他幾個端點(diǎn)呢?引導(dǎo)孩子匯報。教師根據(jù)孩子所說在黑板上記錄下“每相鄰兩條線段的端點(diǎn)相連”,板書寫完后老師介紹其實(shí)這句話可以用“圍成”兩字來概括,并寫下“圍成”兩字。
(5)師第四次修改,得到圖⑤,請生自己說一說什么是三角形。
經(jīng)過上面的四次修改,孩子們都同意圖⑤是三角形了。在充分經(jīng)歷了上述的體驗(yàn)過程之后,每個學(xué)生應(yīng)該對三角形的定義有了具體的認(rèn)識。然后請學(xué)生們根據(jù)剛才的體驗(yàn)活動試著說一說什么是三角形。老師根據(jù)學(xué)生匯報補(bǔ)充完整三角形的定義,并請全體學(xué)生讀一讀。為了充分體驗(yàn)定義中“圍成”兩字的含義,讀完之后讓學(xué)生體驗(yàn)怎么“圍”,再一次讓學(xué)生體驗(yàn)要每相鄰兩條線段的端點(diǎn)相連。
【課例教學(xué)片斷解讀2】三角形的作高方法
1. 請學(xué)生試著上來找出三角形上的高。
2. 教師根據(jù)學(xué)生的匯報在黑板上示范作三角形的高(BC邊上的高)。
學(xué)生觀察教師作高,了解BC邊上的高是從頂點(diǎn)A開始畫,垂直于BC的,但對這個新知的掌握僅限于高的靜態(tài)表象,即這條邊是橫向放置的,這條高是縱向放置的。endprint
3. 討論:作BC邊上的高實(shí)際上就是畫什么?
教師在多媒體上抽象出圖1。學(xué)生觀察教師示范作高后獲取的只是作高的知識和技能,而通過觀察討論,把作高與以前學(xué)過的“過直線外一點(diǎn)作直線的垂線段”這一舊知識緊密聯(lián)系,建立起了作高的橋梁。
4. 作AC、AB邊上的高。
通過作BC邊上的高的體驗(yàn),學(xué)生了解了作高的本質(zhì)屬性,就是過頂點(diǎn)作對邊的垂線段。正是“轉(zhuǎn)化”這種數(shù)學(xué)基本思想的介入讓學(xué)生明確高的方向取決于頂點(diǎn)和對邊的位置,只要找準(zhǔn)點(diǎn)和對邊,就可以將高轉(zhuǎn)化為過頂點(diǎn)畫對邊的垂線段,無論底的方向如何放置,作高都顯得易如反掌了。這種轉(zhuǎn)化思想的運(yùn)用,不僅建立了舊知與新知的聯(lián)系,更是突破了作高這一學(xué)習(xí)難點(diǎn)。
5. 學(xué)生自己練習(xí)作高,在練習(xí)紙上畫一畫AB、BC、AC邊上的高。
6. 游戲:找朋友。
(1)直角三角形各底邊上的高
由于直角三角形上的兩條直角邊互為底和高,較難理解,通過之前的“轉(zhuǎn)化”體驗(yàn),讓學(xué)生感受高和邊重合了,并思考為什么會重合,以及在什么情況下會重合。
(2)鈍角三角形各條底邊上的高
在前測中,反映出第1題中的第③題情況,畫點(diǎn)到直線的垂線段,當(dāng)直線需要延長的情況,學(xué)生們對舊知的掌握比較不理想,教師在請孩子找這種情況下的高之前,先隱去另外兩邊,介紹下底邊延長的情況,幫助學(xué)生在作高的時候能夠更好地進(jìn)行知識遷移。
三、課后“再診”——利用“后測”,檢驗(yàn)教學(xué)效果
(一)編擬后測試題
1. 分別畫出以下三角形指定“底邊”上的高。
2. 判斷:下面圖形中是三角形的請打“√”,不是三角形的請打“×”。
(二)匯總后測結(jié)果,分析教學(xué)有效性
調(diào)研的對象為剛才授課的那班學(xué)生,該班的學(xué)生總數(shù)為34人。
通過相關(guān)數(shù)據(jù)分析,教學(xué)之后學(xué)生們對三角形的定義已經(jīng)完全掌握,沒有出現(xiàn)問題。三角形作高是本節(jié)課的教學(xué)難點(diǎn),和前測比較,錯誤率雖然已經(jīng)有了大幅度的降低,但是部分學(xué)生還是弄不清。在銳角三角形中作高錯誤率已為0,但問題就出現(xiàn)在直角三角形和鈍角三角形這兩類三角形中。
四、反思課堂教學(xué)
(一)借助前測,建構(gòu)知識
從學(xué)生課后的后測反饋來看,前測的介入和有效的教學(xué)設(shè)計(jì),使整個學(xué)習(xí)過程中學(xué)生學(xué)得主動、學(xué)得生動、學(xué)得扎實(shí)。在這個過程中,教師把工作的重心轉(zhuǎn)變到如何根據(jù)教學(xué)目標(biāo)把握學(xué)生的學(xué)習(xí)起點(diǎn)、科學(xué)地設(shè)計(jì)教學(xué)內(nèi)容,并有效地組織學(xué)生參與到學(xué)習(xí)的過程中去,從而提高課堂效率。
(二)把握課堂中的教學(xué)細(xì)節(jié)
針對后測中學(xué)生出現(xiàn)的典型錯誤,課堂上還需把握好一些教學(xué)細(xì)節(jié)。
1. 明確對應(yīng)
有的孩子還沒看清哪條是底,就急于找高。首先一定要明確底和所對應(yīng)的頂點(diǎn),這是準(zhǔn)確作高的先決條件。課上可以組織這樣的游戲,比一比誰的反應(yīng)快,老師指底,學(xué)生找對應(yīng)的頂點(diǎn),或者老師指頂點(diǎn),學(xué)生找對應(yīng)的底邊,為準(zhǔn)確作高埋下伏筆。
2. 選擇好多媒體出示的時機(jī)
課后還是有部分學(xué)生不能掌握直角三角形中,兩條直角邊互為另一條的“高”。問其原因,認(rèn)為高一定是另一條“線”,不敢認(rèn)可自己的作圖結(jié)果,于是隨便畫一條。雖然課中有提到直角三角形中直角邊上的高,但還欠把握課件出示時機(jī),讓學(xué)生對這個“底和高”的“重合”有更深的認(rèn)識。后測中在鈍角三角形中畫高亦是如此。
3. 提煉作高步驟
在典型錯題中還有個別學(xué)生已經(jīng)找到了高的位置,但是三角板的擺放不夠規(guī)范、到位,出現(xiàn)了高和底的假垂直。三角形作高需要做到“雙重合”,即“邊”重合——三角板的一條邊與底邊重合;“點(diǎn)”重合——另一條直角邊與頂點(diǎn)重合。這對于四年級學(xué)生來說存在一定難度。另外,可以在教學(xué)中對作高步驟進(jìn)行提煉,可以編口訣之類的,讓學(xué)生畫的時候可以朗朗上口,邊說邊檢查自己有沒有擺放規(guī)范。
蘇霍姆林斯基說過,不了解孩子,就談不上教育。因此,我們的教學(xué)首先應(yīng)該擺脫以自我為中心的陋習(xí)。做好前測,切實(shí)走入學(xué)生,深入了解學(xué)生需要,站在學(xué)生的認(rèn)知基礎(chǔ)上設(shè)計(jì)教學(xué)活動,尋找更高效的教學(xué)策略,及時反思課堂并調(diào)整教學(xué),給學(xué)生構(gòu)架高效課堂。endprint